

# **TECHNICAL MEMO**

ISSUED FOR USE

| То:        | Mr. Myles Hargrove<br>Summit Earthworks Inc                                    | Date:              | July 19, 2016    |
|------------|--------------------------------------------------------------------------------|--------------------|------------------|
| <b>c</b> : |                                                                                | Memo No.:          | 001              |
| From:      | Lucas Hennecker, Environmental Specialist<br>Lora Paul, Senior Project Manager | File:              | ENG.VGE003082-01 |
| Subject:   | Environmental Soil Sampling in Conjunction with C                              | Geotechnical Inves | tigation         |

### 1.0 INTRODUCTION

Summit Earthworks Inc. (Summit) retained Tetra Tech EBA Inc. (Tetra Tech EBA) to conduct environmental soil sampling in conjunction with a geotechnical investigation at a proposed contaminated soils transfer facility located on Derwent Way (herein referred to as "the Site") in New Westminster, BC. Tetra Tech EBA understands that the environmental soil sampling was conducted to provide baseline soil concentrations at the Site prior to development of the Site as a contaminated soils transfer facility.

### 2.0 SCOPE OF WORK

Tetra Tech EBA completed the following scope of work:

- Completed soil sampling at five geotechnical testhole locations (TH16-01 to TH16-05) from surface to just above the water table;
- Submitted one to two select soil samples per testhole to AGAT Laboratories for analysis. Analysis included light
  extractable hydrocarbons (LEPH), heavy extractable hydrocarbons (HEPH), polycyclic aromatic hydrocarbons
  (PAH), extractable petroleum hydrocarbons (EPH), volatile organic compounds (VOCs) [including benzene,
  toluene, ethylbenzene, and xylenes (BTEX)], volatile petroleum hydrocarbons (VPH), sodium & chloride, and
  metals; and
- Prepared this technical memo summarizing the investigations analytical results and field findings.

### 3.0 METHODOLOGIES

On May 25, 2016, soil samples were collected during the completion of a geotechnical investigation. Five testholes were completed at the Site using solid stem drilling method. Samples were collected from each testhole at regular intervals of depth or when there was a change in material type or color. Nitrile gloves were worn when handling soil and were changed regularly to reduce the potential for cross-contamination between soil samples.

Soil samples were field screened for hydrocarbon vapours using an RKI Eagle gas monitor with methane elimination. Soil samples were collected in plastic bags and warmed for approximately 20 to 30 minutes, after which vapour concentrations were measured in parts per million (ppm) or lower explosive limit (LEL%) and recorded on the soil description logs. Hydrocarbon vapour measurements were used to help select samples for laboratory analysis. Measured field vapour concentrations were zero for all samples collected.



Tetra Tech EBA Inc. Suite 1000 – 10<sup>th</sup> Floor, 885 Dunsmuir Street Vancouver, BC V6C 1N5 CANADA Tel 604.685.0275 Fax 604.684.6241 Samples selected for possible laboratory analyses were placed in sterile 120 mL glass jars with Teflon<sup>™</sup>-lined lids while samples for BTEX/VPH testing in 40 mL vials (containing 10 mL of methanol for preservation). All samples were then stored on ice in coolers and transported to AGAT Laboratories for analysis.

Environmental testhole logs showing description of soils, sample locations, and field vapour concentrations are attached as Appendix B. A site plan showing the testhole locations is attached as Figure 1.

### 4.0 SOIL ASSESSMENT STANDARDS

For most land in British Columbia, soil is assessed based on standards outlined in the Environmental Management *Act* (EMA) under the jurisdiction of the British Columbia Ministry of Environment (MoE). The regulation under the EMA that is directly applicable to the laboratory results is the Contaminated Sites Regulation (CSR).

The provincial standards considered applicable to the Property are stipulated in the following document:

Environmental Management Act (EMA), Contaminated Sites Regulation (CSR), BC Reg. 375/96, deposited 1996/12/16, O.C. 1480/96, effective 1997/04/01 (including amendments up to BC Reg. 4/2014, effective January 31, 2014).

Generic standards for the assessment and remediation of soils are detailed in CSR Schedules 4 and 10. Generic standards depend solely on land use. The current land usage of the Site is "vacant". Zoning of the Site is M-2, which is defined as Heavy Industrial Districts. Based on current zoning, CSR Schedules 4 and 10 generic numerical soil standards for Industrial Land (IL) use was used for comparison of laboratory soil results.

Matrix standards for the assessment and remediation of soils are detailed in Schedule 5 of the CSR. Matrix standards are risk-based standards that depend on land use and a number of site-specific factors. For pH-dependent matrix standards, the most stringent soil pH was used to select the appropriate standard based on the laboratory data.

Two site-specific factors from CSR Schedule 5 apply to all sites in British Columbia, irrespective of land uses. They include the intake of contaminated soil and toxicity to soil invertebrates and plants. In addition, the soil matrix numerical standards listed in CSR Schedule 5 are also dependent on water use on a site and/or within surrounding lands. Without an assessment of groundwater use for the Site, the CSR mandates that the most stringent standards from Schedule 5, including protection of drinking water (DW) be applied to all sites in British Columbia. The Fraser River at the Site is considered to be a mix of both marine and freshwater, therefore, both were also applied and the most stringent used.

In conclusion, the following site-specific factors from Schedule 5 were applied to the Property:

- Intake of contaminated soil;
- Toxicity to soil invertebrates and plants;
- Groundwater used for drinking water; and
- Groundwater flow to surface water used by freshwater and marine aquatic life.

2

### 5.0 RESULTS

A copy of the laboratory report, which contains the analytical data obtained during this baseline assessment, is included in Appendix C. A summary of the soil analytical results are presented in Table 1.

### 5.1 Soil Stratigraphy

General observations at testholes TH16-01, TH16-02, and TH16-03 were that the soil was characterized as being a sand and gravel fill material down to approximately 30 cm switching to a sand fill material down to a depth of approximately 4 to 5 m. Trace organics were observed sporadically within testholes TH16-01 and TH16-02 and black organic matter (possibly tree bark) was observed at approximately 4 m depth within TH16-03. For testhole TH16-04, the soil stratigraphy alternated between a sand and gravel fill (0 – 30 cm), to a sand fill (30 cm – 2.1 m), to a silt and sand possibly fill (2.1 – 2.4 m) and back to a sand possibly fill down to approximately 3.0 m. Trace organics were observed sporadically within the top 3.0 m of TH16-04. For testhole TH16-05 the soil stratigraphy alternated between a sand fill (30 cm – 2.7 m) and then to a silt with sand possibly fill down to approximately 3.0 m. Trace organics were observed sporadically within the top 3.0 m of testhole TH16-05 and black organic matter (possibly tree bark) was observed sporadically within the top 3.0 m of testhole TH16-05 and black organic matter (possibly tree bark) was observed at approximately 2.3 m depth. At approximately 3.0 to 4.3 m depth, an organic layer (possibly fill) was observed which contained suspect wood waste with creosote odours. Throughout all testholes, the water table was generally observed to be at depth of approximately 6.0 to 6.5 m.

### 5.2 Testhole Analytical Summary

Samples were selected for laboratory analysis based on field observations, field vapour concentrations and future development of the Site as a contaminated soils transfer facility. Since future development will be at grade and minimal soils will be removed during development, the samples collected within the top 1.0 m from each testhole was selected for analysis. Additional samples collected at depth were selected for analysis based on observed potential contamination at 3.5 m below grade at TH16-05 and every metre to 5 m in the other testholes for baseline purposes.

Table A identifies in red which parameters exceeded at which testholes and at which sample depth.

### Table A: Parameter Exceedances

| Sample Description                                                                                            | Hydrocarbons                                                                                                                                                                | Salts                                                                                                                          | Metals                                                                            | VOCs                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|
| TH16-05 (depth 3.5 m):<br>organics with gravel, sand,<br>silt and clay (possible fill)<br>with creosote odour | <csr il="" standard<="" td=""><td><csr il="" standard<="" td=""><td><csr il="" standard<="" td=""><td>&gt;CSR IL Standards<br/>for Benzene</td></csr></td></csr></td></csr> | <csr il="" standard<="" td=""><td><csr il="" standard<="" td=""><td>&gt;CSR IL Standards<br/>for Benzene</td></csr></td></csr> | <csr il="" standard<="" td=""><td>&gt;CSR IL Standards<br/>for Benzene</td></csr> | >CSR IL Standards<br>for Benzene |

In summary, based on all the analytical testing completed, the soil at testhole TH16-05 at a depth of 3.5 m was found to contain concentrations of benzene exceeding the applicable CSR IL standards. The remaining parameters tested for at other depths within this testhole and within other testholes, including, LEPH/HEPH/PAHs, EPH, BTEX, VOCs, VPH, sodium & chloride, and metals had concentrations less than the CSR IL standards.

### 6.0 QUALITY ASSURANCE/QUALITY CONTROL PROTOCOLS

Tetra Tech EBA's Quality Assurance/Quality Control (QA/QC) protocols for this investigation included:

- Adhering to standard Tetra Tech EBA quality management system field and record keeping procedures;
- Using new disposable gloves when collecting each sample;
- Placing samples in appropriate new and labelled laboratory-supplied containers;
- Properly preserving samples and transporting the samples to the analytical laboratory in an ice-filled cooler;
- Keeping detailed field notes and accurately recording sample locations;
- Completing chain-of-custody forms for all samples submitted for laboratory analyses;
- Analyzing the samples within the recommended holding time following their collection, at a laboratory accredited by Canadian Association for Laboratory Accreditation (CALA);
- Confirming and verifying database integrity by requiring that one person who did not compile the tables appearing in this report review the tables and compare the tabulated analytical results with the original information appearing on the laboratory certificates and information on the chain-of-custody forms to verify the accuracy of the information in the tables; and
- Requiring that a senior Tetra Tech EBA professional review this report to verify that it meets Tetra Tech EBA investigation and reporting standards.



### 7.0 CLOSURE

We trust this memo meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Prepared by: Lucas Hennecker, B.Sc., R.B.Tech. Environmental Specialist Environment Practice Direct Line: 778.945.5892 Lucas.Hennecker@tetratech.com Reviewed by: Lora J Paul, P.Eng. Senior Project Manager Environmental Practice Direct Line: 250.714.3043 Lora.Paul@tetratech.com

/sy

Attachments: Tables (1a to 1c) Figure (1) Appendix A: Tetra Tech EBA's General Conditions Appendix B: Testhole Logs Appendix C: Laboratory Analytical Results



# **TABLES**

- Table 1aSoil Analytical Results Hydrocarbons
- Table 1b
   Soil Analytical Results Soluble Parameters and Metals
- Table 1c
   Soil Analytical Results Volatile Organic Compounds

#### Table 1a: Soil Analytical Results - Hydrocarbons

|                                         |      |          | TH1         | 16-01       | -01 TH16-02 TH16-03 TH16-04 |             | TH1         | 6-05        |             |             |             |             |
|-----------------------------------------|------|----------|-------------|-------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Parameter                               | Unit | CSR - IL | 1.0 m       | 4.75 m      | 0.5 m                       | 2.0 m       | 0.4 m       | 3.8 m       | 0.5 m       | 2.0 m       | 0.25 m      | 3.5 m       |
|                                         |      |          | 25-May-2016 | 25-May-2016 | 25-May-2016                 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 |
| BTEXS & MTBE                            |      |          |             |             |                             |             |             |             |             |             |             |             |
| Benzene                                 | µg/g | 0.04 #1  | <0.02       | <0.02       | < 0.02                      | <0.02       | <0.02       | <0.02       | <0.02       | -           | -           | 0.11        |
| Toluene                                 | µg/g | 2.5 #1   | < 0.05      | <0.05       | < 0.05                      | <0.05       | <0.05       | <0.05       | <0.05       | -           | -           | <0.05       |
| Ethylbenzene                            | µg/g | 7 #1     | < 0.05      | < 0.05      | < 0.05                      | <0.05       | < 0.05      | <0.05       | <0.05       | -           | -           | < 0.05      |
| Xylene (m)                              | µg/g | -        | < 0.05      | <0.05       | <0.05                       | <0.05       | <0.05       | <0.05       | <0.05       | -           | -           | 0.06        |
| Xylene (o)                              | µg/g | -        | < 0.05      | < 0.05      | <0.05                       | <0.05       | < 0.05      | <0.05       | <0.05       | -           | -           | < 0.05      |
| Xylenes Total                           | µg/g | 20 #1    | <0.2        | <0.1        | <0.2                        | <0.1        | <0.2        | <0.1        | <0.2        | -           | -           | <0.2        |
| Styrene                                 | µg/g | 50       | < 0.05      | < 0.05      | <0.05                       | <0.05       | < 0.05      | <0.05       | <0.05       | -           | -           | < 0.05      |
| MTBE                                    | µg/g | 700 #2   | <0.1        | <0.1        | <0.1                        | <0.1        | <0.1        | <0.1        | <0.1        | -           | -           | <0.1        |
| Hydrocarbons                            |      |          |             |             |                             |             |             |             |             |             |             |             |
| EPH <sub>10-19</sub>                    | µg/g | 2000*    | <20         | <20         | <20                         | <20         | <20         | <20         | <20         | <20         | <20         | 38          |
| EPH <sub>19-32</sub>                    | µg/g | 5000*    | <20         | <20         | <20                         | <20         | <20         | 45          | <20         | <20         | 59          | 346         |
| LEPH                                    | µg/g | 2000     | <20         | -           | <20                         | -           | <20         | -           | <20         | -           | <20         | 37          |
| HEPH                                    | µg/g | 5000     | <20         | -           | <20                         | -           | <20         | -           | <20         | -           | 58          | 341         |
| VH <sub>6-10</sub>                      | µg/g | -        | <10         | <10         | <10                         | <10         | <10         | <10         | <10         | -           | -           | <10         |
| VPH <sub>6-10</sub>                     | µg/g | 200      | <10         | <10         | <10                         | <10         | <10         | <10         | <10         | -           | -           | <10         |
| Polycyclic Aromatic Hydrocarbons (PAHs) |      |          |             |             |                             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene                     | µg/g | -        | <0.01       | -           | <0.01                       | -           | <0.01       | -           | <0.01       | -           | <0.01       | 0.10        |
| 2-methylnaphthalene                     | µg/g | -        | <0.01       | -           | <0.01                       | -           | <0.01       | -           | <0.01       | -           | <0.01       | 0.14        |
| Acenaphthene                            | µg/g | -        | <0.01       | -           | <0.01                       | -           | <0.01       | -           | <0.01       | -           | <0.01       | 0.06        |
| Acenaphthylene                          | hð/ð | -        | <0.01       | -           | <0.01                       | -           | <0.01       | -           | <0.01       | -           | <0.01       | 0.08        |
| Anthracene                              | µg/g | -        | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | <0.02       | 0.24        |
| Benz(a)anthracene                       | µg/g | 10       | <0.02       | -           | <0.02                       | -           | 0.03        | -           | <0.02       | -           | 0.03        | 1.01        |
| Benzo(a)pyrene                          | ug/g | 10 #1    | < 0.05      | -           | < 0.05                      | -           | < 0.05      | -           | < 0.05      | -           | < 0.05      | 1.07        |
| Benzo(b)fluoranthene                    | µg/g | 10       | <0.02       | -           | <0.02                       | -           | 0.02        | -           | <0.02       | -           | 0.03        | 0.69        |
| Benzo(b+j)fluoranthene                  | hð/ð | -        | < 0.03      | -           | <0.03                       | -           | <0.03       | -           | <0.03       | -           | 0.05        | 1.15        |
| Benzo(g,h,i)perylene                    | µg/g | -        | < 0.05      | -           | <0.05                       | -           | <0.05       | -           | < 0.05      | -           | <0.05       | 0.71        |
| Benzo(j)fluoranthene                    | µg/g | -        | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | 0.02        | 0.46        |
| Benzo(k)fluoranthene                    | µg/g | 10       | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | 0.02        | 0.55        |
| Chrysene                                | µg/g | -        | <0.05       | -           | <0.05                       | -           | <0.05       | -           | <0.05       | -           | <0.05       | 0.94        |
| Dibenz(a,h)anthracene                   | µg/g | 10       | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | <0.02       | 0.26        |
| Fluoranthene                            | µg/g | -        | <0.05       | -           | <0.05                       | -           | 0.07        | -           | <0.05       | -           | 0.06        | 0.95        |
| Fluorene                                | µg/g | -        | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | <0.02       | 0.08        |
| Indeno(1,2,3-c,d)pyrene                 | µg/g | 10       | <0.02       | -           | <0.02                       | -           | <0.02       | -           | <0.02       | -           | 0.02        | 0.68        |
| Naphthalene                             | µg/g | 50       | <0.01       | -           | <0.01                       | -           | <0.01       | -           | <0.01       | -           | <0.01       | 0.24        |
| Phenanthrene                            | µg/g | 50       | <0.02       | -           | <0.02                       | -           | 0.03        | -           | <0.02       | -           | 0.03        | 0.55        |
| Pyrene                                  | µg/g | 100      | <0.02       | -           | <0.02                       | -           | 0.05        | -           | <0.02       | -           | 0.06        | 0.95        |
| Laboratory Work Order Number            |      |          | 16V098953   | 16V098953   | 16V098953                   | 16V098953   | 16V098953   | 16V098953   | 16V098953   | 16V098953   | 16V098953   | 16V098953   |
| Laboratory Identification Number        |      |          | 7586225     | 7586230     | 7586231                     | 7586257     | 7586261     | 7586273     | 7586275     | 7586301     | 7586319     | 7586326     |

| NOTES:                         |                                                                                                                                           |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| #1                             | CSR Schedule 5 Substance.                                                                                                                 |
| #2                             | CSR Schedule 10 Substance.                                                                                                                |
| -                              | Not analyzed or no CSR standard exists.                                                                                                   |
| <                              | Concentration is less than the laboratory detection limit indicated.                                                                      |
| *                              | EPH C10-C19 concentrations compared to the LEPH standard and EPH C19-C32 concentrations compared to the HEPH standard.                    |
| EPHs                           | Extractable Petroleum Hydrocarbons.                                                                                                       |
| LEPHs/HEPHs                    | Light and Heavy EPHs.                                                                                                                     |
| MTBE                           | Methyl Tert Butyl Ether                                                                                                                   |
| VH                             | Volatile Hydrocarbons                                                                                                                     |
| VPH                            | Volatile Petroleum Hydrocarbons                                                                                                           |
| CSR                            | BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4, 5 and 10). |
| IL                             | Industrial Land Standards                                                                                                                 |
| Site specific factors include: | - Intake of contaminated soil.                                                                                                            |
|                                | - Toxicity to soil invertebrates and plants.                                                                                              |
|                                | - Groundwater used for drinking water.                                                                                                    |
|                                | - Groundwater flow to surface water used by freshwater and marine aquatic life.                                                           |
|                                | Most stringent applicable site specific standard is shown.                                                                                |
| Bold                           | Bold and shaded indicates an exceedance of the CSR standard                                                                               |



|                                  |          |                          | TH1                 | 6-01                           | TH16-02   | TH16-03     | TH1         | 6-04        | TH1         | 6-05        |
|----------------------------------|----------|--------------------------|---------------------|--------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|
| Parameter                        | Unit     | CSR - IL                 | 1.0 m               | 4.75 m                         | 0.5 m     | 0.4 m       | 0.5 m       | 2.0 m       | 0.25 m      | 3.5 m       |
|                                  |          |                          | 25-May-2016         | 25-May-2016 25-May-2016 25-May |           | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 |
| Physical Parameters              |          |                          |                     |                                |           |             |             |             |             |             |
| pН                               | pH Units | -                        | 7.12                | -                              | 6.43      | 7.78        | 6.68        | 7.02        | 7.74        | 8.02        |
| Percent Saturation               | %        | -                        | -                   | 37.2                           | 37.1      | 35.3        | 34.2        | -           | -           | 63.1        |
| Soluble Chloride (µg/g)          | µg/g     | 90                       | -                   | 3                              | <2        | 3           | <2          | -           | -           | 15          |
| Soluble Chloride (mg/L)          | mg/L     | -                        | -                   | 8                              | 3         | 8           | 3           | -           | -           | 24          |
| Soluble Sodium (µg/g)            | µg/g     | 1000 #1                  | -                   | 3                              | <2        | 2           | <2          | -           | -           | 20          |
| Soluble Sodium (mg/L)            | mg/L     | -                        | -                   | 7                              | 3         | 6           | 2           | -           | -           | 31          |
| Metals                           |          |                          |                     |                                |           |             |             |             |             |             |
| Antimony                         | µg/g     | 40                       | 0.2                 | -                              | 0.2       | 0.2         | 5.1         | 4.5         | 1.2         | 0.8         |
| Arsenic                          | µg/g     | 15 <sup>#1</sup>         | 2.9                 | -                              | 3.4       | 3.0         | 9.9         | 8.4         | 5.1         | 4.1         |
| Barium                           | µg/g     | 400 #1                   | 46.2                | -                              | 44.8      | 47.5        | 46.0        | 45.1        | 86.0        | 117         |
| Beryllium                        | µg/g     | 8                        | 0.2                 | -                              | 0.2       | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         |
| Cadmium                          | µg/g     | 1.5-150 <sup>#1,2</sup>  | 0.22                | -                              | 0.22      | 0.21        | 0.23        | 0.23        | 0.27        | 0.23        |
| Chromium                         | µg/g     | 60 <sup>#1</sup>         | 22                  | -                              | 21        | 24          | 27          | 26          | 25          | 20          |
| Cobalt                           | µg/g     | 300                      | 7.7                 | -                              | 7.5       | 7.8         | 7.9         | 7.9         | 8.2         | 6.5         |
| Copper                           | µg/g     | 250 <sup>#1,2</sup>      | 13.2                | -                              | 13.6      | 14.4        | 19.7        | 17.1        | 27.8        | 39.7        |
| Lead                             | µg/g     | 250-2000 <sup>#1,2</sup> | 2.8                 | -                              | 3.7       | 5.5         | 10.1        | 9.4         | 23.8        | 43.3        |
| Mercury                          | µg/g     | 150 <sup>#1</sup>        | 0.02                | -                              | 0.02      | 0.02        | 0.01        | 0.02        | 0.03        | 0.04        |
| Molybdenum                       | µg/g     | 40                       | 0.4                 | -                              | 0.3       | 0.5         | 1.2         | 0.6         | 1.2         | 1.5         |
| Nickel                           | µg/g     | 500                      | 31.1                | -                              | 30.4      | 30          | 32.8        | 31.3        | 21.3        | 17.6        |
| Selenium                         | µg/g     | 10                       | 0.1                 | -                              | <0.1      | <0.1        | 0.1         | 0.2         | <0.1        | 0.3         |
| Silver                           | µg/g     | 40                       | <0.5                | -                              | <0.5      | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
| Thallium                         | µg/g     | -                        | <0.1                | -                              | <0.1      | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| Tin                              | µg/g     | 300                      | 0.3                 | -                              | 0.3       | 0.3         | 1.7         | 0.8         | 1           | 2.9         |
| Vanadium                         | µg/g     | -                        | 42                  | -                              | 40        | 43          | 40          | 44          | 54          | 45          |
| Zinc                             | µg/g     | 150-600 #1,2             | 37                  | -                              | 38        | 48          | 64          | 64          | 74          | 58          |
| Laboratory Work Order Number     |          |                          | 16V098953 16V098953 |                                | 16V098953 | 16V098953   | 16V098953   | 16V098953   | 16V098953   | 16V098953   |
| Laboratory Identification Number |          |                          | 7586225             | 7586230                        | 7586231   | 7586261     | 7586275     | 7586301     | 7586319     | 7586326     |

#### Table 1b: Soil Analytical Results - Soluble Parameters and Metals

NOTES: #1 CSR Schedule 5 Substance. #2 Standard is pH dependent. Values shown based on site pH range of 6.43 to 8.02. -Not analyzed or no CSR standard exists. < Concentration is less than the laboratory detection limit indicated. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4 and 5). CSR IL Industrial Land Standards Site specific soil factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater and marine aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CSR standard



|                                   |      |                      | TH16-01     | TH16-02     | TH16-03     | TH16-04     | TH16-05     |
|-----------------------------------|------|----------------------|-------------|-------------|-------------|-------------|-------------|
| Parameter                         | Unit | CSR - IL             | 1.0 m       | 0.5 m       | 0.4 m       | 0.5 m       | 3.5 m       |
|                                   |      |                      | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 | 25-May-2016 |
| Volatile Organic Compounds (VOCs) | •    | •                    |             |             |             |             |             |
| Acetone                           | hð/ð | 54,000 <sup>#1</sup> | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
| Bromodichloromethane              | hð\ð | 18 <sup>#1</sup>     | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Bromoform                         | hð\d | 2200 <sup>#1</sup>   | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Bromomethane                      | hð\d | 13 <sup>#1</sup>     | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Carbon tetrachloride              | hð\d | 50                   | <0.02       | <0.02       | <0.02       | <0.02       | <0.02       |
| Chlorobenzene                     | hð\à | 10                   | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Chloroethane                      | hð\d | 65 <sup>#1</sup>     | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Chloroform                        | hð\à | 50                   | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Chloromethane                     | hð\d | 160 #1               | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Dibromochloromethane              | hð\à | 26 #1                | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,2-Dibromoethane                 | hð\d | 0.73 #1              | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,2-Dichlorobenzene               | hð/ð | 10                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,3-Dichlorobenzene               | hð\d | 10                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,4-Dichlorobenzene               | hð/ð | 10                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,1-Dichloroethane                | hð\d | 50                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,2-Dichloroethane                | hð/ð | 50                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,1-Dichloroethene                | hð/ð | 50                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| cis-1,2-Dichloroethene            | hð/ð | 50 <sup>#1</sup>     | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| trans-1,2-Dichloroethene          | hð/ð | 50 <sup>#1</sup>     | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| Dichloromethane                   | hð/ð | 50                   | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,2-Dichloropropane               | hð/ð | 50                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| cis-1,3-Dichloropropene           | µg/g | 50                   | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| trans-1,3-Dichloropropene         | µg/g | 50                   | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| Methyl Ethyl Ketone               | µg/g | 110,000 #1           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
| 4-Methyl-2-pentanone              | µg/g | 47,000 #1            | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
| 1,1,1,2-Tetrachloroethane         | µg/g | 73 <sup>#1</sup>     | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,1,2,2-Tetrachloroethane         | µg/g | 9.3 <sup>#1</sup>    | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,2,4-Trichlorobenzene            | µg/g | -                    | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| Tetrachloroethene                 | µg/g | 5 <sup>#2</sup>      | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,1,1-Trichloroethane             | µg/g | 50 <sup>#1</sup>     | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| 1,1,2-Trichloroethane             | µg/g | 50 <sup>#1</sup>     | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| Trichloroethene                   | µg/g | 0.015 #2             | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| Trichlorofluoromethane            | µg/g | 2000 #1              | < 0.05      | <0.05       | <0.05       | <0.05       | <0.05       |
| Vinyl chloride                    | µg/g | 7.5 #1               | <0.05       | < 0.05      | <0.05       | <0.05       | <0.05       |
| Laboratory Work Order Number      |      |                      | 16V098953   | 16V098953   | 16V098953   | 16V098953   | 16V098953   |
| Laboratory Identification Number  |      |                      | 7586225     | 7586231     | 7586261     | 7586275     | 7586326     |

#### Table 1c: Soil Analytical Results - Volatile Organic Compounds

| Notes:                              |                                                                                                                                           |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| #1                                  | CSR Schedule 10 Substance.                                                                                                                |
| #2                                  | CSR Schedule 5 Substance.                                                                                                                 |
| -                                   | Not analyzed or no CSR standard exists.                                                                                                   |
| <                                   | Concentration is less than the laboratory detection limit indicated.                                                                      |
| CSR                                 | BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4, 5 and 10). |
| IL                                  | Industrial Land Standards                                                                                                                 |
| Site specific soil factors include: | - Intake of contaminated soil.                                                                                                            |
|                                     | - Toxicity to soil invertebrates and plants.                                                                                              |
|                                     | - Groundwater used for drinking water.                                                                                                    |
|                                     | - Groundwater flow to surface water used by freshwater and marine aquatic life.                                                           |
|                                     | Most stringent applicable site specific standard is shown.                                                                                |
| Bold                                | Bold and shaded indicates an exceedance of the CSR standard                                                                               |



# **FIGURES**

Figure 1 Environmental Soil Sampling Testhole Locations





VANC

July 18, 2016



# **APPENDIX A** TETRA TECH EBA'S GENERAL CONDITIONS

### **GEOENVIRONMENTAL REPORT**

This report incorporates and is subject to these "General Conditions".

#### 1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of Tetra Tech EBA's client. Tetra Tech EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

#### 2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. The Client warrants that Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

#### 3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by Tetra Tech EBA in its reasonably exercised discretion.

#### 4.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.





|                                           |          |                                                                                                                                                                                                    | Borehole                                        | No                       | <b>)</b> :  | T              | H16-0                   | 1                                     |                       |                  |  |
|-------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|-------------|----------------|-------------------------|---------------------------------------|-----------------------|------------------|--|
|                                           |          |                                                                                                                                                                                                    | Proiect: Contaminated Sc                        | ils Tra                  | nsfe        | r Facili       | itv                     | Proiect No: \                         | /GEO03082             |                  |  |
| _                                         |          | – EARTHWORKS –                                                                                                                                                                                     | Location: Derwent Way a                         | nd Salt                  | er S        | t              |                         | Ground Elev                           | :: 8.5 m              |                  |  |
|                                           |          |                                                                                                                                                                                                    | New Westminster, BC                             |                          |             | -              |                         |                                       |                       |                  |  |
|                                           |          |                                                                                                                                                                                                    | ,                                               |                          | Γ           |                |                         |                                       |                       |                  |  |
| o Depth<br>(m)                            | Method   | Soil<br>Description                                                                                                                                                                                |                                                 | Graphical Representation | Sample Type | Sample Number  | ■ Vapour readi<br>10 20 | ngs (ppmv) <b>■</b><br>30 40          | Notes and<br>Comments | Elevation<br>(m) |  |
| -                                         |          | SAND and GRAVEL (FILL); medium sand with cobbles, brown: compact                                                                                                                                   | fine gravel, and silt; dry; light               |                          |             | 05             |                         |                                       |                       |                  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |          | SAND (FILL); coarse uniform sand; dark brown; moist to<br>- Trace fine gravel and trace organics to 1.75 m                                                                                         | wet; loose to compact                           |                          |             | 0.5 ∎<br>1.0 ∎ |                         |                                       |                       | 8-               |  |
| 2                                         |          |                                                                                                                                                                                                    |                                                 |                          |             | 2.0            | •                       |                                       |                       | 6                |  |
|                                           | auger    |                                                                                                                                                                                                    |                                                 |                          |             | 3.5 ∎          | •                       |                                       |                       | 5-               |  |
| 5                                         | lid stem | - Grey; damp                                                                                                                                                                                       |                                                 | - 💥                      |             | 4.75∎          | ••••••                  |                                       |                       | 4-               |  |
| -<br>                                     | S        | SILT; grey; no plasticity; some fine sand, trace clay; trac<br>dilatency; firm                                                                                                                     | e organics; wet to damp; rapic                  |                          |             |                |                         |                                       |                       | 3-<br>           |  |
|                                           |          | CLAY with silt; trace fine sand; grey; medium plasticity;                                                                                                                                          | irace organics; moist; firm                     |                          |             |                |                         |                                       |                       | 2-               |  |
| 8                                         |          |                                                                                                                                                                                                    |                                                 |                          |             |                | : :                     | · · · · · · · · · · · · · · · · · · · |                       |                  |  |
|                                           |          | SAND; coarse sand; dark grey; moist to wet; compact                                                                                                                                                | ity moist dark grow firm                        | /111                     | 1           |                |                         |                                       |                       | 0-               |  |
| E 9                                       |          |                                                                                                                                                                                                    | ity, moist, dark grey, iimi                     |                          |             |                |                         | · · · · · · · · · · · · · · · · · · · |                       |                  |  |
| <br>10                                    |          | EOH @ 9.15 m<br>- Soil description and Unified Soil Classification is based<br>- Elevation is approximate and based from Google Earth<br>- Estimates of soil consistency were made from in situ te | on visual assessment.<br>.st results and visual |                          |             |                |                         |                                       |                       | -1               |  |
| L<br>L<br>L<br>L<br>L<br>11               |          | classification of samples. Estimates are based on eng                                                                                                                                              | ineering judgement.                             |                          |             |                |                         |                                       |                       | -2               |  |
| <br>12                                    |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       | -3-              |  |
| Ē                                         |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       | -4               |  |
| - 13<br>-                                 |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       |                  |  |
| Ē                                         |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       | -5-              |  |
| E<br>14                                   |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       |                  |  |
|                                           |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       | -9-              |  |
| - 15                                      |          |                                                                                                                                                                                                    |                                                 |                          |             |                |                         |                                       |                       | -0               |  |
|                                           |          |                                                                                                                                                                                                    | Contractor: Downrite Drill                      | ing                      |             |                |                         | Completion I                          | Depth: 9.15 m         | 1                |  |
|                                           |          | TETRA TECH                                                                                                                                                                                         | Drilling Rig Type: Auger Tracked                |                          |             |                |                         | Start Date: 2016 May 25               |                       |                  |  |
|                                           | U        |                                                                                                                                                                                                    | Logged By: CM/LH                                |                          |             |                |                         | Completion I                          | Date: 2016 May 25     |                  |  |
|                                           |          |                                                                                                                                                                                                    | Reviewed By: LP                                 |                          |             |                |                         | Page 1 of 1                           |                       |                  |  |

|                |                                 |                                                                                                                                           | Borehole                          | No                       | ):          | T             | H16-0                   | 2                                     |                       |                  |  |
|----------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|-------------|---------------|-------------------------|---------------------------------------|-----------------------|------------------|--|
|                |                                 |                                                                                                                                           | Project: Contaminated Sc          | ils Trar                 | nsfe        | r Facili      | ity                     | Project No: \                         | /GE003082             |                  |  |
| -              |                                 | - EARTHWORKS                                                                                                                              | Location: Derwent Way a           | nd Salt                  | er S        | t             | ,                       | Ground Elev                           | r: 8.5 m              |                  |  |
|                |                                 |                                                                                                                                           | New Westminster, BC               |                          |             |               |                         |                                       |                       |                  |  |
|                |                                 |                                                                                                                                           |                                   | _                        |             |               |                         |                                       |                       |                  |  |
| o Depth<br>(m) | Method                          | Soil<br>Description                                                                                                                       |                                   | Graphical Representation | Sample Type | Sample Number | ■ Vapour readi<br>10 20 | ngs (ppmv) <b>■</b><br>30 40          | Notes and<br>Comments | Elevation<br>(m) |  |
|                |                                 | SAND and GRAVEL (FILL); medium sand with cobbles,<br>brown: compact                                                                       | fine gravel, and silt; dry; light |                          |             | 05            |                         | · · ·                                 |                       |                  |  |
| Ē              |                                 | SAND (FILL); coarse uniform sand; dark brown; moist to                                                                                    | wet; loose to compact             | - 🕅                      |             | 0.5           |                         |                                       |                       | 8-               |  |
| - 1<br>-       |                                 | - Trace fine gravel and trace organics to 1.5 m                                                                                           |                                   |                          |             | 1.0           |                         |                                       |                       |                  |  |
| -              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | 7-               |  |
| E<br>2         |                                 |                                                                                                                                           |                                   |                          |             | 2.0           | •                       | ···                                   |                       |                  |  |
| Ē              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | 6                |  |
|                |                                 |                                                                                                                                           |                                   |                          |             | 30            |                         |                                       |                       |                  |  |
| - 3            |                                 |                                                                                                                                           |                                   |                          |             | 5.0           |                         |                                       |                       |                  |  |
| -              | <u>_</u>                        |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | 5-               |  |
| 4              | Inge                            |                                                                                                                                           |                                   | $-\bigotimes$            |             | 4.0           |                         | · · · · · · · · · · · · · · · · · · · |                       |                  |  |
| Ē              | E<br>E<br>E                     | - Wet                                                                                                                                     |                                   |                          |             |               |                         |                                       |                       | 4-               |  |
| Ē              | l ste                           |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
| E              | Solic                           | SILT: some fine sand: grow low placticity: trace organize                                                                                 | wat: rapid dilatopov: firm        |                          |             |               |                         | · · ·                                 |                       |                  |  |
| Ē              |                                 |                                                                                                                                           | s, wet, rapid unatency, min       |                          |             |               |                         |                                       |                       | 3-               |  |
| <u></u> 6⊻     |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | <b>⊥</b>         |  |
| -              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | 2-               |  |
| E<br>7         |                                 |                                                                                                                                           | that a state from the sector      |                          |             |               |                         |                                       |                       |                  |  |
| Ē              |                                 | SILT with clay; some organics; grey, low to medium plas                                                                                   | sticity; moist; firm to soft      |                          |             |               |                         |                                       |                       | 1_               |  |
|                |                                 | CLAY with silt; some organics; medium to high plasticity                                                                                  | ; moist; light grey to light      |                          |             |               |                         |                                       |                       |                  |  |
| 8<br>8<br>8    |                                 | brown; firm                                                                                                                               |                                   |                          |             |               |                         | · · · · · · · · · · · · · · · · · · · |                       |                  |  |
| <u>-</u><br>-  |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | 0                |  |
| E 9            |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
| Ē              |                                 | - Soil description and Unified Soil Classification is based                                                                               | l on visual assessment.           |                          |             |               |                         |                                       |                       | -1-              |  |
| E<br>- 10      |                                 | <ul> <li>Elevation is approximate and based from Google Earth</li> <li>Estimates of soil consistency were made from in situ te</li> </ul> | est results and visual            |                          |             |               |                         |                                       |                       |                  |  |
| F              |                                 | classification of samples. Estimates are based on eng                                                                                     | ineering judgement.               |                          |             |               |                         |                                       |                       |                  |  |
| Ē              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | -2               |  |
| E 11           |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
| <u>-</u><br>-  |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | -3-              |  |
| - 12           |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
| Ē              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | -4               |  |
| E 13           |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
|                |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
| E              |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | -5-              |  |
| - 14<br>-      |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       |                  |  |
|                |                                 |                                                                                                                                           |                                   |                          |             |               |                         |                                       |                       | -6-              |  |
| - 15           |                                 |                                                                                                                                           | I                                 |                          |             |               |                         | 1                                     |                       |                  |  |
|                |                                 |                                                                                                                                           | Contractor: Downrite Drill        | ing                      |             |               |                         | Completion I                          | Depth: 9.15 m         |                  |  |
|                | TETRATECH Drilling Rig Type: Au |                                                                                                                                           |                                   |                          |             |               |                         | Start Date: 2016 May 25               |                       |                  |  |
| "              |                                 |                                                                                                                                           | Logged By: CM/LH                  |                          |             |               |                         | Completion Date: 2016 May 25          |                       |                  |  |
|                |                                 |                                                                                                                                           | Reviewed By: LP                   |                          |             |               |                         | Page 1 of 1                           |                       |                  |  |

|                       |                |                                                                                                                                                                                                                                                                                          | Borehole                                                                        | No                       | ):          | T              | H16-0                   | 3                      |                         |                   |  |  |
|-----------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-------------|----------------|-------------------------|------------------------|-------------------------|-------------------|--|--|
|                       |                |                                                                                                                                                                                                                                                                                          | Project: Contaminated Soi                                                       | ls Trar                  | nsfe        | r Facil        | ity                     | Project No: \          | /GEO03082               |                   |  |  |
| _                     |                | – EARTHWORKS —                                                                                                                                                                                                                                                                           | Location: Derwent Way ar                                                        | nd Salt                  | er S        | t              |                         | Ground Elev            | :9 m                    |                   |  |  |
|                       |                |                                                                                                                                                                                                                                                                                          | New Westminster, BC                                                             |                          |             |                |                         |                        |                         |                   |  |  |
| o Depth<br>(m)        | Method         | Soil<br>Description                                                                                                                                                                                                                                                                      |                                                                                 | Graphical Representation | Sample Type | Sample Number  | ■ Vapour readi<br>10 20 | ings (ppmv) ■<br>30 40 | Notes and<br>Comments   | Elevation<br>(m)  |  |  |
|                       |                | SAND and GRAVEL (FILL); medium sand with cobbles,<br>brown: compact                                                                                                                                                                                                                      | fine gravel, and silt; dry; light                                               |                          |             | 0.4            |                         |                        |                         |                   |  |  |
| 1                     |                | SAND (FILL); coarse uniform sand, some small gravel; o<br>compact                                                                                                                                                                                                                        | dark grey/brown; moist; loose to                                                |                          |             | 1.0 ∎<br>2.0 ∎ |                         |                        |                         | 8-                |  |  |
| Ē                     | er             |                                                                                                                                                                                                                                                                                          |                                                                                 |                          |             | 3.8            |                         |                        |                         |                   |  |  |
| 4<br>                 | olid stem augo | 15 cm long strip of black organic matter (possibly tree i<br>CLAY with silt; some organics; grey; medium plasticity;                                                                                                                                                                     | bark)<br>moist; firm                                                            |                          |             | 5.25           |                         |                        |                         | 5                 |  |  |
| Ē                     | S              | Interbedded SILT and SAND<br>- SAND; coarse uniform sand; dark grey/brown; moist; c                                                                                                                                                                                                      | ompact                                                                          |                          |             |                |                         |                        |                         | -                 |  |  |
| 6 <u>▼</u>            |                | - SILT with fine sand; trace clay; some organics; grey; n<br>SAND; coarse sand; grey; damp; compact                                                                                                                                                                                      | edium plasticity; moist; firm                                                   |                          |             |                |                         |                        |                         | <b>∑</b> 3-<br>2- |  |  |
| 8                     |                | CLAY with silt; trace organics; grey; medium plasticity; r<br>- 1 cm thick black organic layer                                                                                                                                                                                           | noist; firm                                                                     |                          |             |                |                         |                        |                         | 1                 |  |  |
| 10<br>11<br>11        |                | <ul> <li>EOH @ 9.15 m</li> <li>Soil description and Unified Soil Classification is based</li> <li>Elevation is approximate and based from Google Earth</li> <li>Estimates of soil consistency were made from in situ te classification of samples. Estimates are based on eng</li> </ul> | I on visual assessment.<br>a.<br>est results and visual<br>gineering judgement. |                          |             |                |                         |                        |                         | -1                |  |  |
| 12                    |                |                                                                                                                                                                                                                                                                                          |                                                                                 |                          |             |                |                         |                        |                         | -3-               |  |  |
| 13                    |                |                                                                                                                                                                                                                                                                                          |                                                                                 |                          |             |                |                         |                        |                         | -4                |  |  |
| -<br>-<br>-<br>-<br>- |                |                                                                                                                                                                                                                                                                                          |                                                                                 |                          |             |                |                         |                        |                         | -5-               |  |  |
| - 15                  | <u> </u>       | _                                                                                                                                                                                                                                                                                        | Contractor: Downrite Drilli                                                     | na I                     |             |                |                         | Completion I           | L<br>Depth: 9.15 m      | -6                |  |  |
|                       |                |                                                                                                                                                                                                                                                                                          |                                                                                 |                          | Tracked     |                |                         |                        | Start Date: 2016 May 25 |                   |  |  |
|                       |                |                                                                                                                                                                                                                                                                                          | Logged By: CM/LH                                                                |                          |             |                |                         | Completion I           | Date: 2016 May 25       |                   |  |  |
|                       |                |                                                                                                                                                                                                                                                                                          | Reviewed By: LP                                                                 |                          |             |                |                         | Page 1 of 1            |                         |                   |  |  |

|                                                                                             |           |                                                                                                                                                                                                                                                                                         | Borehole                                                                   | No                       | ):          | T              | H16-0          | 4                       |                       |                  |
|---------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|-------------|----------------|----------------|-------------------------|-----------------------|------------------|
|                                                                                             |           |                                                                                                                                                                                                                                                                                         | Project: Contaminated So                                                   | ils Trar                 | nsfe        | Facil          | ity            | Project No: \           | /GEO03082             |                  |
| _                                                                                           |           | – EARTHWORKS —                                                                                                                                                                                                                                                                          | Location: Derwent Way ar                                                   | nd Salt                  | er S        | t              | -              | Ground Elev             | :9 m                  |                  |
|                                                                                             |           |                                                                                                                                                                                                                                                                                         | New Westminster, BC                                                        |                          |             |                |                |                         |                       |                  |
| Depth<br>(m)                                                                                | Method    | Soil<br>Description                                                                                                                                                                                                                                                                     |                                                                            | Graphical Representation | Sample Type | Sample Number  | ■ Vapour readi | ngs (ppmv) 🗖            | Notes and<br>Comments | Elevation<br>(m) |
| 0                                                                                           |           | SAND and GRAVEL (FILL): medium sand with cobbles                                                                                                                                                                                                                                        | fine gravel and silt: dry: light                                           | $\rightarrow$            | -           |                | 10 20          | 30 40                   |                       | 9                |
|                                                                                             |           | SAND and GRAVEL (FILL), medium sand with coopies,<br>brown; compact<br>SAND (FILL); coarse uniform sand, trace small gravel; li<br>grey/brown; moist; compact                                                                                                                           | ght brown silt inclusions; dark                                            |                          |             | 0.5 I<br>1.0 I |                |                         |                       | 8                |
| 2                                                                                           |           | SILT and SAND (possible FILL); fine sand; dry; light bro<br>SAND (possible FILL); coarse uniform sand, trace fine g<br>loose<br>- Possible FILL material based on air photo history                                                                                                     | wn; trace organics<br>ravel; dark grey/brown; moist;                       |                          |             | 3.0            |                |                         |                       | 7                |
| - 4                                                                                         | ıger      | CLAY; some silt, trace fine sand; trace organics; dark br<br>plasticity; firm to stiff<br>CLAY; some silt, trace fine sand; grey; moist; low plastic                                                                                                                                    | own, mottled; moist; low                                                   |                          |             |                |                |                         |                       | 5-               |
| 5                                                                                           | d stem au | SAND; coarse sand; grey; damp to wet at 6 m; compact                                                                                                                                                                                                                                    |                                                                            |                          |             | 4.5 ∎          | •              |                         |                       | 4-               |
| 6<br>                                                                                       | Sol       | CLAY with silt; grey; thin organic inclusions; damp; med stiff                                                                                                                                                                                                                          | ium to high plasticity; firm to                                            |                          |             |                |                |                         |                       | 3<br>¥<br>2      |
| 8                                                                                           |           | SILT with clay; grey; medium plasticity; damp; firm to sti                                                                                                                                                                                                                              | ff                                                                         |                          |             |                |                |                         |                       | 1-               |
| 9                                                                                           |           | CLAY; some silt, thin organic inclusions; grey; damp; mo<br>stiff<br>SAND: coarse sand: grey: wet: compact                                                                                                                                                                              | edium to high plasticity; firm to                                          |                          |             |                |                |                         |                       | 0                |
| 10<br>10<br>11<br>11                                                                        |           | <ul> <li>EOH @ 9.2 m</li> <li>Soil description and Unified Soil Classification is based</li> <li>Elevation is approximate and based from Google Earth</li> <li>Estimates of soil consistency were made from in situ te classification of samples. Estimates are based on eng</li> </ul> | l on visual assessment.<br>Lest results and visual<br>jineering judgement. |                          |             |                |                |                         |                       | -1               |
| 12                                                                                          |           |                                                                                                                                                                                                                                                                                         |                                                                            |                          |             |                |                |                         |                       | -3-              |
| L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L |           |                                                                                                                                                                                                                                                                                         |                                                                            |                          |             |                |                |                         |                       | -5-              |
|                                                                                             |           |                                                                                                                                                                                                                                                                                         |                                                                            |                          |             |                |                |                         |                       |                  |
|                                                                                             | 1         |                                                                                                                                                                                                                                                                                         | Contractor: Downrite Drilli                                                | ng                       |             |                | 1              | Completion [            | Depth: 9.2 m          | -6-              |
|                                                                                             |           | TETRA TECH                                                                                                                                                                                                                                                                              | Drilling Rig Type: Auger Tracked                                           |                          |             |                |                | Start Date: 2016 May 25 |                       |                  |
|                                                                                             | U         |                                                                                                                                                                                                                                                                                         | Logged By: CM/LH                                                           |                          |             |                |                | Completion [            | Date: 2016 May 25     |                  |
|                                                                                             |           |                                                                                                                                                                                                                                                                                         | Reviewed By: LP                                                            |                          |             | _              |                | Page 1 of 1             |                       | _                |

|                 |               |                                                                                                                                           | Borehole                          | Nc                          | ):          | TI            | H16-0                   | 5                                     |                           |                  |  |
|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|-------------|---------------|-------------------------|---------------------------------------|---------------------------|------------------|--|
|                 |               |                                                                                                                                           | Project: Contaminated Sc          | oils Trans                  | sfer        | Facili        | tv                      | Project No: V                         | /GE003082                 |                  |  |
| _               |               | - EARTHWORKS                                                                                                                              | Location: Derwent Way a           | ind Salte                   | r St        |               | -7                      | Ground Elev:                          | :9 m                      |                  |  |
|                 |               |                                                                                                                                           | New Westminster, BC               |                             |             |               |                         |                                       |                           |                  |  |
|                 |               |                                                                                                                                           | , -                               |                             |             |               |                         |                                       |                           |                  |  |
| Depth<br>(m)    | Method        | Soil<br>Description                                                                                                                       |                                   | Graphical Representation    | Sample Type | Sample Number | ■ Vapour readi<br>10 20 | ngs (ppmv) ■<br>30 40                 | Notes and<br>Comments     | Elevation<br>(m) |  |
| Ē               |               | SAND and GRAVEL (FILL); medium sand with cobbles,                                                                                         | fine gravel, and silt; dry; light |                             |             | 0.25          |                         |                                       |                           | 9                |  |
| <u>-</u><br>-   |               | SAND (FILL); fine sand with silt, trace organics, some fil                                                                                | ne gravel; grey/brown; moist;     |                             |             | 0.5           |                         |                                       |                           |                  |  |
| E 1             |               | loose to compact<br>- Possible FILL material based on air photo history                                                                   |                                   |                             |             | 1.0 🛛         | <b>I</b>                | · · · · · · · · · · · · · · · · · · · |                           | 8-               |  |
| Ē               |               | · · · · · · · · · · · · · · · · · · ·                                                                                                     |                                   |                             |             | 1.5 🛛         |                         |                                       |                           |                  |  |
| <u>ا</u>        |               |                                                                                                                                           |                                   |                             |             | 2.0           |                         |                                       |                           | 7_               |  |
| Ē               |               | - 15 cm long strip of black organic matter (possibly tree l                                                                               | park)                             |                             |             | -             |                         |                                       |                           |                  |  |
| E               |               |                                                                                                                                           | ,<br>                             |                             |             |               |                         |                                       |                           |                  |  |
| - 3             |               | SILT with sand (possible FILL); fine sand, some organic<br>ORGANICS with gravel, sand, silt and clay (possible FIL                        | s; grey; moist; soft to firm      |                             |             |               |                         |                                       |                           | 6-               |  |
|                 |               | odour; compact                                                                                                                            | ,,,,                              |                             |             | 3.5 ∎         |                         |                                       |                           | =                |  |
| 4               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | 5-               |  |
| Ē               |               | CLAY with silt; some fine sand; moist; medium plasticity                                                                                  | ; soft                            |                             |             |               |                         | · · ·                                 |                           |                  |  |
| -               |               |                                                                                                                                           | ,                                 |                             |             |               |                         |                                       |                           |                  |  |
| 5               | _             | CLAY; some sand; some organic and wood fragments; r                                                                                       | noist; soft to firm               |                             |             |               |                         | · · · · · · · · · · · · · · · · · · · |                           | 4-               |  |
| Ē               | nge           |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | =                |  |
| 6               | E<br>E        |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | 3-               |  |
| Ę⊻              | ste           |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | <b>▼</b>         |  |
| Ē               | Solid         | - Damp to wet; medium to high plasticity; firm                                                                                            |                                   |                             |             |               |                         |                                       |                           |                  |  |
| — 7<br>E        |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | 2-               |  |
| -               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| 8               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | 1-               |  |
|                 |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| Ē               |               | SILT with fine sand; damp; grey; compact                                                                                                  |                                   |                             |             |               |                         |                                       |                           |                  |  |
| Ē               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| E               |               | SAND; medium to coarse sand, trace silt; wet; compact                                                                                     |                                   | -                           |             |               |                         |                                       |                           |                  |  |
| - 10            |               |                                                                                                                                           |                                   |                             |             |               |                         | · · · · · · · · · · · · · · · · · · · |                           | -1-              |  |
| -               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | -                |  |
| E<br>11         |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | -2-              |  |
| -               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| Ē               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| – 12<br>E       | <u> </u>      |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | -3-              |  |
|                 |               | - Soil description and Unified Soil Classification is based                                                                               | l on visual assessment.           |                             |             |               |                         |                                       |                           |                  |  |
| - 13            |               | <ul> <li>Elevation is approximate and based from Google Earth</li> <li>Estimates of soil consistency were made from in situ te</li> </ul> | est results and visual            |                             |             |               |                         |                                       |                           | -4               |  |
| Ē               |               | classification of samples. Estimates are based on eng                                                                                     | ineering judgement.               |                             |             |               |                         |                                       |                           |                  |  |
|                 |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| E <sup>14</sup> |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           | -5-              |  |
| Ē               |               |                                                                                                                                           |                                   |                             |             |               |                         |                                       |                           |                  |  |
| - 15            |               |                                                                                                                                           | Contractor: Downrite Drill        | lina                        |             |               |                         | Completion F                          | Penth <sup>,</sup> 12.2 m | -6               |  |
|                 |               |                                                                                                                                           |                                   | ntractor: Downrite Urilling |             |               |                         | Start Date: 2016 May 25               |                           |                  |  |
|                 | TE TETRA TECH |                                                                                                                                           | Lonning Rig Type. Auger Tracked   |                             |             |               |                         | Completion Date: 2016 May 25          |                           |                  |  |
|                 |               |                                                                                                                                           | Reviewed By: LP                   |                             |             |               | Page 1 of 1             |                                       |                           |                  |  |



# APPENDIX C LABORATORY ANALYTICAL RESULTS



#### CLIENT NAME: TETRA TECH EBA INC 1000 - 885 DUNSMUIR STREET. 10TH FLOOR VANCOUVER, BC V6C1N5 (604) 685-0017

**ATTENTION TO: Kalin Johnston** 

PROJECT: 704-ENG.VGEO03082-01.007

AGAT WORK ORDER: 16V098953

SOIL ANALYSIS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

TRACE ORGANICS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

DATE REPORTED: Jun 03, 2016

PAGES (INCLUDING COVER): 25

VERSION\*: 2

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

\*NOTES

VERSION 2: Version 2 was issued to revise sample names, as requested by Lucas Hennecker of Tetra Tech EBA. New report issued June 22, 2016. Version 2 is an amendment of version 1.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V2)

Page 1 of 25

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGEO03082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

#### ATTENTION TO: Kalin Johnston

SAMPLED BY:

| DATE RECEIVED: 2016-05-25 |          |                                  |                                            |                                             |                                             | 0.5 TH16 02 0.4                             |                                             |                                             | DATE REPORTE                                 | D: 2016-06-03                               |  |  |  |  |
|---------------------------|----------|----------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|--|--|
| Parameter                 | Unit     | SAMPLE DES<br>SAM<br>DATE<br>G/S | CRIPTION:<br>IPLE TYPE:<br>SAMPLED:<br>RDL | TH16-01-1.0<br>Soil<br>5/25/2016<br>7586225 | TH16-02-0.5<br>Soil<br>5/25/2016<br>7586231 | TH16-03-0.4<br>Soil<br>5/25/2016<br>7586261 | TH16-04-0.5<br>Soil<br>5/25/2016<br>7586275 | TH16-04-2.0<br>Soil<br>5/25/2016<br>7586301 | TH16-05-0.25<br>Soil<br>5/25/2016<br>7586319 | TH16-05-3.5<br>Soil<br>5/25/2016<br>7586326 |  |  |  |  |
| Antimony                  | µg/g     |                                  | 0.1                                        | 0.2                                         | 0.2                                         | 0.2                                         | 5.1                                         | 4.5                                         | 1.2                                          | 0.8                                         |  |  |  |  |
| Arsenic                   | µg/g     |                                  | 0.1                                        | 2.9                                         | 3.4                                         | 3.0                                         | 9.9                                         | 8.4                                         | 5.1                                          | 4.1                                         |  |  |  |  |
| Barium                    | µg/g     |                                  | 0.5                                        | 46.2                                        | 44.8                                        | 47.5                                        | 46.0                                        | 45.1                                        | 86.0                                         | 117                                         |  |  |  |  |
| Beryllium                 | µg/g     |                                  | 0.1                                        | 0.2                                         | 0.2                                         | 0.2                                         | 0.2                                         | 0.2                                         | 0.2                                          | 0.2                                         |  |  |  |  |
| Cadmium                   | µg/g     |                                  | 0.01                                       | 0.22                                        | 0.22                                        | 0.21                                        | 0.23                                        | 0.23                                        | 0.27                                         | 0.23                                        |  |  |  |  |
| Chromium                  | µg/g     |                                  | 1                                          | 22                                          | 21                                          | 24                                          | 27                                          | 26                                          | 25                                           | 20                                          |  |  |  |  |
| Cobalt                    | µg/g     |                                  | 0.1                                        | 7.7                                         | 7.5                                         | 7.8                                         | 7.9                                         | 7.9                                         | 8.2                                          | 6.5                                         |  |  |  |  |
| Copper                    | µg/g     |                                  | 0.2                                        | 13.2                                        | 13.6                                        | 14.4                                        | 19.7                                        | 17.1                                        | 27.8                                         | 39.7                                        |  |  |  |  |
| Lead                      | µg/g     |                                  | 0.1                                        | 2.8                                         | 3.7                                         | 5.5                                         | 10.1                                        | 9.4                                         | 23.8                                         | 43.3                                        |  |  |  |  |
| Mercury                   | µg/g     |                                  | 0.01                                       | 0.02                                        | 0.02                                        | 0.02                                        | 0.01                                        | 0.02                                        | 0.03                                         | 0.04                                        |  |  |  |  |
| Molybdenum                | µg/g     |                                  | 0.2                                        | 0.4                                         | 0.3                                         | 0.5                                         | 1.2                                         | 0.6                                         | 1.2                                          | 1.5                                         |  |  |  |  |
| Nickel                    | µg/g     |                                  | 0.5                                        | 31.1                                        | 30.4                                        | 30.0                                        | 32.8                                        | 31.3                                        | 21.3                                         | 17.6                                        |  |  |  |  |
| Selenium                  | µg/g     |                                  | 0.1                                        | 0.1                                         | <0.1                                        | <0.1                                        | 0.1                                         | 0.2                                         | <0.1                                         | 0.3                                         |  |  |  |  |
| Silver                    | µg/g     |                                  | 0.5                                        | <0.5                                        | <0.5                                        | <0.5                                        | <0.5                                        | <0.5                                        | <0.5                                         | <0.5                                        |  |  |  |  |
| Thallium                  | µg/g     |                                  | 0.1                                        | <0.1                                        | <0.1                                        | <0.1                                        | <0.1                                        | <0.1                                        | <0.1                                         | <0.1                                        |  |  |  |  |
| Tin                       | µg/g     |                                  | 0.2                                        | 0.3                                         | 0.3                                         | 0.3                                         | 1.7                                         | 0.8                                         | 1.0                                          | 2.9                                         |  |  |  |  |
| Vanadium                  | µg/g     |                                  | 1                                          | 42                                          | 40                                          | 43                                          | 40                                          | 44                                          | 54                                           | 45                                          |  |  |  |  |
| Zinc                      | µg/g     |                                  | 1                                          | 37                                          | 38                                          | 48                                          | 64                                          | 64                                          | 74                                           | 58                                          |  |  |  |  |
| pH 1:2                    | pH units |                                  | 0.05                                       | 7.12                                        | 6.43                                        | 7.78                                        | 6.68                                        | 7.02                                        | 7.74                                         | 8.02                                        |  |  |  |  |

British Columbia Metals Schedule 4 and 5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

**7586225-7586326** Results are based on the dry weight of the sample

**Certified By:** 

ander lamore



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGEO03082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: Kalin Johnston

SAMPLED BY:

| DATE RECEIVED: 2016-05-25 |       |             |           |              |             |             |             |             | DATE REPORTED: 2016-06-03 |
|---------------------------|-------|-------------|-----------|--------------|-------------|-------------|-------------|-------------|---------------------------|
|                           |       | SAMPLE DESC | CRIPTION: | TH16-01-4.75 | TH16-02-0.5 | TH16-03-0.4 | TH16-04-0.5 | TH16-05-3.5 |                           |
|                           |       | SAMP        | PLE TYPE: | Soil         | Soil        | Soil        | Soil        | Soil        |                           |
|                           |       | DATE S      | SAMPLED:  | 5/25/2016    | 5/25/2016   | 5/25/2016   | 5/25/2016   | 5/25/2016   |                           |
| Parameter                 | Unit  | G/S         | RDL       | 7586230      | 7586231     | 7586261     | 7586275     | 7586326     |                           |
| Chloride, Soluble         | mg/L  |             | 2         | 8            | 3           | 8           | 3           | 24          |                           |
| Sodium, Soluble           | mg/L  |             | 2         | 7            | 3           | 6           | 2           | 31          |                           |
| Saturation Percentage     | %     |             |           | 37.2         | 37.1        | 35.3        | 34.2        | 63.1        |                           |
| Chloride, Soluble (mg/kg) | mg/kg |             | 2         | 3            | <2          | 3           | <2          | 15          |                           |
| Sodium, Soluble (mg/kg)   | mg/kg |             | 2         | 3            | <2          | 2           | <2          | 20          |                           |
|                           |       |             |           |              |             |             |             |             |                           |

Soil Salinity - Na & Cl

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

**Certified By:** 

ander Cernorl



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGE003082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

### ATTENTION TO: Kalin Johnston

SAMPLED BY:

# BTEX / VPH (C6-C10) Soil

#### DATE RECEIVED: 2016-05-25

|                                |      | SAMPLE DESCRIPTION: | TH16-01-4.75 | TH16-02-2.0 | TH16-03-3.8 |
|--------------------------------|------|---------------------|--------------|-------------|-------------|
|                                |      | SAMPLE TYPE:        | Soil         | Soil        | Soil        |
|                                |      | DATE SAMPLED:       | 5/25/2016    | 5/25/2016   | 5/25/2016   |
| Parameter                      | Unit | G/S RDL             | 7586230      | 7586257     | 7586273     |
| Methyl tert-butyl ether (MTBE) | µg/g | 0.1                 | <0.1         | <0.1        | <0.1        |
| Benzene                        | µg/g | 0.02                | <0.02        | <0.02       | <0.02       |
| Toluene                        | µg/g | 0.05                | <0.05        | <0.05       | <0.05       |
| Ethylbenzene                   | µg/g | 0.05                | <0.05        | <0.05       | <0.05       |
| m&p-Xylene                     | µg/g | 0.05                | <0.05        | <0.05       | <0.05       |
| o-Xylene                       | µg/g | 0.05                | <0.05        | <0.05       | <0.05       |
| Styrene                        | µg/g | 0.05                | <0.05        | <0.05       | <0.05       |
| VPH                            | µg/g | 10                  | <10          | <10         | <10         |
| VH                             | µg/g | 10                  | <10          | <10         | <10         |
| Total Xylenes                  | ug/g | 0.1                 | <0.1         | <0.1        | <0.1        |
| Surrogate                      | Unit | Acceptable Limits   |              |             |             |
| Bromofluorobenzene             | %    | 60-140              | 103          | 101         | 98          |
| Dibromofluoromethane           | %    | 60-140              | 127          | 120         | 124         |
| Toluene - d8                   | %    | 60-140              | 120          | 118         | 113         |
|                                |      |                     |              |             |             |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7586230-7586273 Results are based on dry weight of sample.

VPH results have been corrected for BTEX contributions.

ander Convort

**DATE REPORTED: 2016-06-03** 



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGEO03082-01.007

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Unit 120, 8600 Glenlyon Parkway

ATTENTION TO: Kalin Johnston

SAMPLED BY:

|                           | EPH Soil |            |           |              |             |             |             |                           |  |  |  |  |  |  |
|---------------------------|----------|------------|-----------|--------------|-------------|-------------|-------------|---------------------------|--|--|--|--|--|--|
| DATE RECEIVED: 2016-05-25 |          |            |           |              |             |             |             | DATE REPORTED: 2016-06-03 |  |  |  |  |  |  |
|                           |          | SAMPLE DES | CRIPTION: | TH16-01-4.75 | TH16-02-2.0 | TH16-03-3.8 | TH16-04-2.0 |                           |  |  |  |  |  |  |
|                           |          | SAM        | PLE TYPE: | Soil         | Soil        | Soil        | Soil        |                           |  |  |  |  |  |  |
|                           |          | DATE       | SAMPLED:  | 5/25/2016    | 5/25/2016   | 5/25/2016   | 5/25/2016   |                           |  |  |  |  |  |  |
| Parameter                 | Unit     | G/S        | RDL       | 7586230      | 7586257     | 7586273     | 7586301     |                           |  |  |  |  |  |  |
| EPH C10-C19               | µg/g     |            | 20        | <20          | <20         | <20         | <20         |                           |  |  |  |  |  |  |
| EPH C19-C32               | µg/g     |            | 20        | <20          | <20         | 45          | <20         |                           |  |  |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7586230-7586301 Results are based on dry weight of sample.

EPH results are not corrected for potential PAH contributions.

ander lamore



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGE003082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

#### **ATTENTION TO: Kalin Johnston**

SAMPLED BY:

| DATE RECEIVED: 2016-05-25 |      |                                                                   |                                             |                                             |                                             |                                             | [                                            | DATE REPORTED: 2                            | 2016-06-03 |
|---------------------------|------|-------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|------------|
| Parameter                 | Unit | SAMPLE DESCRIPTION:<br>SAMPLE TYPE:<br>DATE SAMPLED:<br>G / S RDL | TH16-01-1.0<br>Soil<br>5/25/2016<br>7586225 | TH16-02-0.5<br>Soil<br>5/25/2016<br>7586231 | TH16-03-0.4<br>Soil<br>5/25/2016<br>7586261 | TH16-04-0.5<br>Soil<br>5/25/2016<br>7586275 | TH16-05-0.25<br>Soil<br>5/25/2016<br>7586319 | TH16-05-3.5<br>Soil<br>5/25/2016<br>7586326 |            |
| Naphthalene               | µg/g | 0.01                                                              | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                        | 0.24                                        |            |
| 2-Methylnaphthalene       | µg/g | 0.01                                                              | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                        | 0.14                                        |            |
| 1-Methylnaphthalene       | µg/g | 0.01                                                              | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                        | 0.10                                        |            |
| Acenaphthylene            | µg/g | 0.01                                                              | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                        | 0.08                                        |            |
| Acenaphthene              | µg/g | 0.01                                                              | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                       | <0.01                                        | 0.06                                        |            |
| Fluorene                  | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                        | 0.08                                        |            |
| Phenanthrene              | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | 0.03                                        | <0.02                                       | 0.03                                         | 0.55                                        |            |
| Anthracene                | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                        | 0.24                                        |            |
| Fluoranthene              | µg/g | 0.05                                                              | <0.05                                       | <0.05                                       | 0.07                                        | <0.05                                       | 0.06                                         | 0.95                                        |            |
| Pyrene                    | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | 0.05                                        | <0.02                                       | 0.06                                         | 0.95                                        |            |
| Benzo(a)anthracene        | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | 0.03                                        | <0.02                                       | 0.03                                         | 1.01                                        |            |
| Chrysene                  | µg/g | 0.05                                                              | <0.05                                       | <0.05                                       | <0.05                                       | <0.05                                       | <0.05                                        | 0.94                                        |            |
| Benzo(b)fluoranthene      | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | 0.02                                        | <0.02                                       | 0.03                                         | 0.69                                        |            |
| Benzo(j)fluoranthene      | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | 0.02                                         | 0.46                                        |            |
| Benzo(k)fluoranthene      | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | 0.02                                         | 0.55                                        |            |
| Benzo(a)pyrene            | µg/g | 0.05                                                              | <0.05                                       | <0.05                                       | <0.05                                       | < 0.05                                      | <0.05                                        | 1.07                                        |            |
| Indeno(1,2,3-c,d)pyrene   | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | 0.02                                         | 0.68                                        |            |
| Dibenzo(a,h)anthracene    | µg/g | 0.02                                                              | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                       | <0.02                                        | 0.26                                        |            |
| Benzo(g,h,i)perylene      | µg/g | 0.05                                                              | <0.05                                       | <0.05                                       | <0.05                                       | < 0.05                                      | <0.05                                        | 0.71                                        |            |
| EPH C10-C19               | µg/g | 20                                                                | <20                                         | <20                                         | <20                                         | <20                                         | <20                                          | 38                                          |            |
| EPH C19-C32               | µg/g | 20                                                                | <20                                         | <20                                         | <20                                         | <20                                         | 59                                           | 346                                         |            |
| LEPH C10-C19              | µg/g | 20                                                                | <20                                         | <20                                         | <20                                         | <20                                         | <20                                          | 37                                          |            |
| HEPH C19-C32              | µg/g | 20                                                                | <20                                         | <20                                         | <20                                         | <20                                         | 58                                           | 341                                         |            |
| Benzo(b+j)fluoranthene    | µg/g | 0.03                                                              | <0.03                                       | <0.03                                       | <0.03                                       | <0.03                                       | 0.05                                         | 1.15                                        |            |
| Surrogate                 | Unit | Acceptable Limits                                                 |                                             |                                             |                                             |                                             |                                              |                                             |            |
| Naphthalene - d8          | %    | 50-130                                                            | 80                                          | 88                                          | 79                                          | 97                                          | 84                                           | 81                                          |            |
| 2-Fluorobiphenyl          | %    | 50-130                                                            | 82                                          | 89                                          | 86                                          | 97                                          | 83                                           | 85                                          |            |
| P-Terphenyl - d14         | %    | 60-130                                                            | 76                                          | 90                                          | 81                                          | 92                                          | 92                                           | 92                                          |            |

I EPH/HEPH Soil

Certified By:

ander Conorl



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGEO03082-01.007

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: Kalin Johnston

**DATE REPORTED: 2016-06-03** 

SAMPLED BY:

### LEPH/HEPH Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7586225-7586319 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.

7586326 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions. Soil sample is visibly heterogeneous.

**Certified By:** 

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGE003082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

#### **ATTENTION TO: Kalin Johnston**

SAMPLED BY:

|                                |      |                                                      | Volatile                         | organic co                       | inpounds in                      | 1 3011                           |                                  |                           |
|--------------------------------|------|------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|
| DATE RECEIVED: 2016-05-25      |      |                                                      |                                  |                                  |                                  |                                  | D                                | DATE REPORTED: 2016-06-03 |
|                                |      | SAMPLE DESCRIPTION:<br>SAMPLE TYPE:<br>DATE SAMPLED: | TH16-01-1.0<br>Soil<br>5/25/2016 | TH16-02-0.5<br>Soil<br>5/25/2016 | TH16-03-0.4<br>Soil<br>5/25/2016 | TH16-04-0.5<br>Soil<br>5/25/2016 | TH16-05-3.5<br>Soil<br>5/25/2016 |                           |
| Parameter                      | Unit | G/S RDL                                              | 7586225                          | 7586231                          | 7586261                          | 7586275                          | 7586326                          |                           |
| Chloromethane                  | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Vinyl Chloride                 | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Bromomethane                   | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Chloroethane                   | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Trichlorofluoromethane         | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Acetone                        | µg/g | 0.5                                                  | <0.5                             | <0.5                             | <0.5                             | <0.5                             | <0.5                             |                           |
| 1,1-Dichloroethene             | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Dichloromethane                | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Methyl tert-butyl ether (MTBE) | µg/g | 0.1                                                  | <0.1                             | <0.1                             | <0.1                             | <0.1                             | <0.1                             |                           |
| 2-Butanone (MEK)               | µg/g | 0.5                                                  | <0.5                             | <0.5                             | <0.5                             | <0.5                             | <0.5                             |                           |
| trans-1,2-Dichloroethene       | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,1-Dichloroethane             | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| cis-1,2-Dichloroethene         | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Chloroform                     | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,2-Dichloroethane             | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,1,1-Trichloroethane          | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Carbon Tetrachloride           | µg/g | 0.02                                                 | <0.02                            | <0.02                            | <0.02                            | <0.02                            | <0.02                            |                           |
| Benzene                        | µg/g | 0.02                                                 | <0.02                            | <0.02                            | <0.02                            | <0.02                            | 0.11                             |                           |
| 1,2-Dichloropropane            | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Trichloroethene                | µg/g | 0.01                                                 | <0.01                            | <0.01                            | <0.01                            | <0.01                            | <0.01                            |                           |
| Bromodichloromethane           | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| trans-1,3-Dichloropropene      | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 4-Methyl-2-pentanone (MIBK)    | µg/g | 0.5                                                  | <0.5                             | <0.5                             | <0.5                             | <0.5                             | <0.5                             |                           |
| cis-1,3-Dichloropropene        | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,1,2-Trichloroethane          | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Toluene                        | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Dibromochloromethane           | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Ethylene Dibromide             | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Tetrachloroethene              | µg/g | 0.05                                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,1,1,2-Tetrachloroethane      | µg/g | 0.05                                                 | < 0.05                           | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |

Volatile Organic Compounds in Soil

**Certified By:** 

Andre Carnorl



AGAT WORK ORDER: 16V098953 PROJECT: 704-ENG.VGE003082-01.007 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

#### CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

#### ATTENTION TO: Kalin Johnston

SAMPLED BY:

|                           |              |                                                      | · · · · · · · · · · · · · · · · · · · |                                  |                                  |                                  |                                  |                           |
|---------------------------|--------------|------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|
| DATE RECEIVED: 2016-05-25 |              |                                                      |                                       |                                  |                                  |                                  |                                  | DATE REPORTED: 2016-06-03 |
| Parameter                 | Unit         | SAMPLE DESCRIPTION:<br>SAMPLE TYPE:<br>DATE SAMPLED: | TH16-01-1.0<br>Soil<br>5/25/2016      | TH16-02-0.5<br>Soil<br>5/25/2016 | TH16-03-0.4<br>Soil<br>5/25/2016 | TH16-04-0.5<br>Soil<br>5/25/2016 | TH16-05-3.5<br>Soil<br>5/25/2016 |                           |
| Chlorobenzene             |              | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| Ethylbonzono              | P9/9         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
|                           | μg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | 0.05                             |                           |
| Bromoform                 | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | ~0.05                            |                           |
| Styrene                   | µ9/9<br>µa/a | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,1,2,2-Tetrachloroethane | µg/q         | 0.05                                                 | < 0.05                                | <0.05                            | <0.05                            | <0.05                            | < 0.05                           |                           |
| o-Xylene                  | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,3-Dichlorobenzene       | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,4-Dichlorobenzene       | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,2-Dichlorobenzene       | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| 1,2,4-Trichlorobenzene    | µg/g         | 0.05                                                 | <0.05                                 | <0.05                            | <0.05                            | <0.05                            | <0.05                            |                           |
| VH                        | µg/g         | 10                                                   | <10                                   | <10                              | <10                              | <10                              | <10                              |                           |
| VPH                       | µg/g         | 10                                                   | <10                                   | <10                              | <10                              | <10                              | <10                              |                           |
| Total Xylenes             | µg/g         | 0.2                                                  | <0.2                                  | <0.2                             | <0.2                             | <0.2                             | <0.2                             |                           |
| Surrogate                 | Unit         | Acceptable Limits                                    |                                       |                                  |                                  |                                  |                                  |                           |
| Bromofluorobenzene        | %            | 60-140                                               | 97                                    | 100                              | 94                               | 96                               | 99                               |                           |
| Dibromofluoromethane      | %            | 60-140                                               | 114                                   | 113                              | 118                              | 116                              | 121                              |                           |
| Toluene - d8              | %            | 60-140                                               | 112                                   | 111                              | 109                              | 114                              | 111                              |                           |

Volatile Organic Compounds in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7586225-7586326 Results are based on dry weight of sample.

**Certified By:** 

ander lamore



## **Quality Assurance**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGE003082-01.007

SAMPLING SITE:

AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston

#### SAMPLED BY:

| Soil Analysis                  |            |        |        |         |      |                 |                    |             |                |                    |             |                |          |              |                |
|--------------------------------|------------|--------|--------|---------|------|-----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|----------|--------------|----------------|
| RPT Date: Jun 03, 2016         |            |        | D      | UPLICAT | E    |                 | REFERENCE MATERIAL |             |                | METHOD BLANK SPIKE |             |                | МАТ      | RIX SPII     | KE             |
| PARAMETER                      | Batch      | Sample | Dup #1 | Dup #2  | RPD  | Method<br>Blank | Measured           | Acce<br>Lir | ptable<br>nits | Recovery           | Acce<br>Lin | ptable<br>nits | Recovery | Accej<br>Lin | ptable<br>nits |
|                                |            | iu iu  |        |         |      |                 | value              | Lower       | Upper          |                    | Lower       | Upper          |          | Lower        | Upper          |
| British Columbia Metals Schedu | le 4 and 5 |        |        |         |      |                 |                    |             |                |                    |             |                |          |              |                |
| Antimony                       | 7594539    |        | 0.3    | 0.3     | NA   | < 0.1           | 109%               | 70%         | 130%           | 101%               | 90%         | 110%           |          |              |                |
| Arsenic                        | 7594539    |        | 3.1    | 2.8     | 7.6% | < 0.1           | 110%               | 70%         | 130%           | 94%                | 90%         | 110%           |          |              |                |
| Barium                         | 7594539    |        | 75.1   | 82.3    | 9.1% | < 0.5           | 100%               | 70%         | 130%           | 105%               | 90%         | 110%           |          |              |                |
| Beryllium                      | 7594539    |        | 0.3    | 0.3     | NA   | < 0.1           | 89%                | 70%         | 130%           | 96%                | 90%         | 110%           |          |              |                |
| Cadmium                        | 7594539    |        | 0.23   | 0.22    | 4.7% | < 0.01          | 120%               | 70%         | 130%           | 98%                | 90%         | 110%           |          |              |                |
| Chromium                       | 7594539    |        | 31     | 30      | 1.8% | < 1             | 106%               | 70%         | 130%           | 98%                | 90%         | 110%           |          |              |                |
| Cobalt                         | 7594539    |        | 9.7    | 10.1    | 4.7% | < 0.1           | 107%               | 70%         | 130%           | 96%                | 90%         | 110%           |          |              |                |
| Copper                         | 7594539    |        | 26.6   | 26.7    | 0.3% | < 0.2           | 103%               | 70%         | 130%           | 102%               | 90%         | 110%           |          |              |                |
| Lead                           | 7594539    |        | 4.0    | 4.1     | 2.9% | < 0.1           | 97%                | 70%         | 130%           | 102%               | 90%         | 110%           |          |              |                |
| Mercury                        | 7594539    |        | 0.02   | 0.03    | NA   | < 0.01          | 93%                | 70%         | 130%           | 105%               | 90%         | 110%           |          |              |                |
| Molybdenum                     | 7594539    |        | 0.2    | 0.2     | NA   | < 0.2           | 103%               | 70%         | 130%           | 101%               | 90%         | 110%           |          |              |                |
| Nickel                         | 7594539    |        | 27.3   | 27.8    | 2.1% | < 0.5           | 107%               | 70%         | 130%           | 103%               | 90%         | 110%           |          |              |                |
| Selenium                       | 7594539    |        | <0.1   | <0.1    | NA   | < 0.1           |                    |             |                | 101%               | 90%         | 110%           |          |              |                |
| Silver                         | 7594539    |        | <0.5   | <0.5    | NA   | < 0.5           | 73%                | 70%         | 130%           | 96%                | 90%         | 110%           |          |              |                |
| Thallium                       | 7594539    |        | <0.1   | <0.1    | NA   | < 0.1           | 107%               | 70%         | 130%           | 102%               | 90%         | 110%           |          |              |                |
| Tin                            | 7594539    |        | 0.4    | 0.4     | NA   | < 0.2           | 106%               | 70%         | 130%           | 109%               | 90%         | 110%           |          |              |                |
| Vanadium                       | 7594539    |        | 61     | 63      | 3.0% | < 1             | 107%               | 70%         | 130%           | 102%               | 90%         | 110%           |          |              |                |
| Zinc                           | 7594539    |        | 50     | 49      | 1.5% | < 1             | 108%               | 70%         | 130%           | 97%                | 90%         | 110%           |          |              |                |
| pH 1:2                         | 7594539    |        | 5.82   | 5.83    | 0.2% | < 0.1           | 98%                | 90%         | 110%           | 100%               | 95%         | 105%           |          |              |                |

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

| Soil Salinity - Na & Cl |         |       |      |      |      |     |      |     |      |      |     |      |
|-------------------------|---------|-------|------|------|------|-----|------|-----|------|------|-----|------|
| Chloride, Soluble       | 7586230 | IHR   | 579  | 549  | 5.3% | < 2 | 97%  | 80% | 120% | 101% | 85% | 115% |
| Sodium, Soluble         | 7586230 | IHR   | 296  | 294  | 0.7% | < 2 | 83%  | 80% | 120% | 102% | 85% | 115% |
| Saturation Percentage   | 7586230 | 20151 | 31.7 | 32.1 | 1.3% | <   | 101% | 80% | 120% |      |     |      |

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

**Certified By:** 

ander Cernorl

#### AGAT QUALITY ASSURANCE REPORT (V2)

Page 10 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



# **Quality Assurance**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGEO03082-01.007

SAMPLING SITE:

AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston

# SAMPLED BY:

|                                 |               |               | mac         | iary 3    | 13        |                 |          |        |                 |          |       |                |          |         |                |
|---------------------------------|---------------|---------------|-------------|-----------|-----------|-----------------|----------|--------|-----------------|----------|-------|----------------|----------|---------|----------------|
| RPT Date: Jun 03, 2016          |               |               |             | UPLICAT   | E         |                 | REFERE   | NCE MA | TERIAL          | METHOD   | BLANK | SPIKE          | MAT      | RIX SPI | KE             |
| <b>BADAMETED</b>                |               | Sample        |             |           |           | Method<br>Blank | Measured | Acce   | eptable<br>mits | _        | Acce  | ptable<br>nits | _        | Acce    | ptable<br>nits |
| PARAMETER                       | Batch         | ld            | Dup #1      | Dup #2    | RPD       |                 | Value    | Lower  | Upper           | Recovery | Lower | Upper          | Recovery | Lower   | Upper          |
| LEPH/HEPH Soil                  |               |               | 1           |           |           | 1               | 1        |        |                 | 1        | 1     | 1              | 1        |         | L              |
| Naphthalene                     | 65757         | 7586225       | <0.01       | <0.01     | NA        | < 0.01          | 101%     | 80%    | 120%            |          |       |                | 104%     | 50%     | 130%           |
| 2-Methylnaphthalene             | 65757         | 7586225       | <0.01       | <0.01     | NA        | < 0.01          | 100%     | 80%    | 120%            |          |       |                | 98%      | 50%     | 130%           |
| 1-Methylnaphthalene             | 65757         | 7586225       | <0.01       | <0.01     | NA        | < 0.01          | 100%     | 80%    | 120%            |          |       |                | 101%     | 50%     | 130%           |
| Acenaphthylene                  | 65757         | 7586225       | <0.01       | <0.01     | NA        | < 0.01          | 100%     | 80%    | 120%            |          |       |                | 105%     | 50%     | 130%           |
| Acenaphthene                    | 65757         | 7586225       | <0.01       | <0.01     | NA        | < 0.01          | 101%     | 80%    | 120%            |          |       |                | 105%     | 50%     | 130%           |
| Fluorene                        | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 106%     | 50%     | 130%           |
| Phenanthrene                    | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 98%      | 80%    | 120%            |          |       |                | 87%      | 60%     | 130%           |
| Anthracene                      | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 108%     | 60%     | 130%           |
| Fluoranthene                    | 65757         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 101%     | 80%    | 120%            |          |       |                | 105%     | 60%     | 130%           |
| Pyrene                          | 65757         | 7586225       | <0.02       | 0.02      | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 106%     | 60%     | 130%           |
| Benzo(a)anthracene              | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 108%     | 60%     | 130%           |
| Chrysene                        | 65757         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 100%     | 80%    | 120%            |          |       |                | 105%     | 60%     | 130%           |
| Benzo(b)fluoranthene            | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 96%      | 80%    | 120%            |          |       |                | 91%      | 60%     | 130%           |
| Benzo(j)fluoranthene            | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 107%     | 60%     | 130%           |
| Benzo(k)fluoranthene            | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 100%     | 60%     | 130%           |
| Benzo(a)pyrene                  | 65757         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 99%      | 80%    | 120%            |          |       |                | 96%      | 60%     | 130%           |
| Indeno(1,2,3-c,d)pyrene         | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 100%     | 80%    | 120%            |          |       |                | 102%     | 60%     | 130%           |
| Dibenzo(a,h)anthracene          | 65757         | 7586225       | <0.02       | <0.02     | NA        | < 0.02          | 101%     | 80%    | 130%            |          |       |                | 96%      | 60%     | 130%           |
| Benzo(g,h,i)perylene            | 65757         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 97%      | 80%    | 120%            |          |       |                | 101%     | 60%     | 130%           |
| Naphthalene - d8                | 65757         | 7586225       | 80          | 92        | 14.0%     |                 | 101%     | 80%    | 120%            |          |       |                | 89%      | 50%     | 130%           |
| 2-Fluorobiphenyl                | 65757         | 7586225       | 82          | 102       | 21.7%     |                 | 100%     | 80%    | 120%            |          |       |                | 91%      | 50%     | 130%           |
| P-Terphenyl - d14               | 65757         | 7586225       | 76          | 98        | 25.3%     |                 | 105%     | 80%    | 120%            |          |       |                | 93%      | 60%     | 130%           |
| EPH C10-C19                     | 65757         | 7586225       | <20         | <20       | NA        | < 20            | 105%     | 70%    | 130%            |          |       |                | 99%      | 65%     | 120%           |
| EPH C19-C32                     | 65757         | 7586225       | <20         | <20       | NA        | < 20            | 102%     | 70%    | 130%            |          |       |                | 99%      | 80%     | 120%           |
| Comments: RPDs are calculated u | ising raw and | alytical data | and not the | e rounded | duplicate | values rep      | orted.   |        |                 |          |       |                |          |         |                |
| Volatile Organic Compounds in   | Soil          |               |             |           |           |                 |          |        |                 |          |       |                |          |         |                |
| Chloromethane                   | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 98%      | 80%    | 120%            |          |       |                | 113%     | 60%     | 140%           |
| Vinyl Chloride                  | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 98%      | 80%    | 120%            |          |       |                | 108%     | 60%     | 140%           |
| Bromomethane                    | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 99%      | 80%    | 120%            |          |       |                | 113%     | 60%     | 140%           |
| Chloroethane                    | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 99%      | 80%    | 120%            |          |       |                | 109%     | 60%     | 140%           |
| Trichlorofluoromethane          | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 97%      | 80%    | 120%            |          |       |                | 112%     | 70%     | 130%           |
| Acetone                         | 65753         | 7586225       | <0.5        | <0.5      | NA        | < 0.5           | 100%     | 80%    | 120%            |          |       |                | 116%     | 70%     | 130%           |
| 1,1-Dichloroethene              | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 99%      | 80%    | 120%            |          |       |                | 110%     | 70%     | 130%           |
| Dichloromethane                 | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 100%     | 80%    | 120%            |          |       |                | 109%     | 70%     | 130%           |
| Methyl tert-butyl ether (MTBE)  | 65753         | 7586225       | <0.1        | <0.1      | NA        | < 0.1           | 100%     | 80%    | 120%            |          |       |                | 95%      | 70%     | 130%           |
| 2-Butanone (MEK)                | 65753         | 7586225       | <0.5        | <0.5      | NA        | < 0.5           | 100%     | 80%    | 120%            |          |       |                | 99%      | 70%     | 130%           |
| trans-1,2-Dichloroethene        | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 100%     | 80%    | 120%            |          |       |                | 107%     | 70%     | 130%           |
| 1,1-Dichloroethane              | 65753         | 7586225       | <0.05       | <0.05     | NA        | < 0.05          | 99%      | 80%    | 120%            |          |       |                | 107%     | 70%     | 130%           |

#### AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 11 of 25



### **Quality Assurance**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGE003082-01.007

#### SAMPLING SITE:

AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston SAMPLED BY:

### **Trace Organics Analysis (Continued)**

|                             |       |           |        |        |       |                 |                   |             |                | -        |             |                |          |       |                |
|-----------------------------|-------|-----------|--------|--------|-------|-----------------|-------------------|-------------|----------------|----------|-------------|----------------|----------|-------|----------------|
| RPT Date: Jun 03, 2016      |       | DUPLICATE |        |        | REFER |                 | EFERENCE MATERIAL |             |                | BLAN     | ( SPIKE     | MAT            | RIX SPI  | KE    |                |
| PARAMETER                   | Batch | Sample    | Dup #1 | Dup #2 | RPD   | Method<br>Blank | Measured          | Acce<br>Lii | ptable<br>nits | Recovery | Acce<br>Lii | ptable<br>nits | Recovery | Acce  | ptable<br>nits |
|                             |       |           |        |        |       |                 | Value             | Lower       | Upper          |          | Lower       | Upper          |          | Lower | Upper          |
| cis-1,2-Dichloroethene      | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 104%     | 70%   | 130%           |
| Chloroform                  | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 99%               | 80%         | 120%           |          |             |                | 105%     | 70%   | 130%           |
| 1,2-Dichloroethane          | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 105%     | 70%   | 130%           |
| 1,1,1-Trichloroethane       | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 99%               | 80%         | 120%           |          |             |                | 99%      | 70%   | 130%           |
| Carbon Tetrachloride        | 65753 | 7586225   | <0.02  | <0.02  | NA    | < 0.02          | 100%              | 80%         | 120%           |          |             |                | 97%      | 70%   | 130%           |
| Benzene                     | 65753 | 7586225   | <0.02  | <0.02  | NA    | < 0.02          | 100%              | 80%         | 120%           |          |             |                | 103%     | 70%   | 130%           |
| 1,2-Dichloropropane         | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 104%     | 70%   | 130%           |
| Trichloroethene             | 65753 | 7586225   | <0.01  | <0.01  | NA    | < 0.01          | 99%               | 80%         | 120%           |          |             |                | 98%      | 70%   | 130%           |
| Bromodichloromethane        | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 103%     | 70%   | 130%           |
| trans-1,3-Dichloropropene   | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 94%      | 60%   | 140%           |
| 4-Methyl-2-pentanone (MIBK) | 65753 | 7586225   | <0.5   | <0.5   | NA    | < 0.5           | 101%              | 80%         | 120%           |          |             |                | 90%      | 70%   | 130%           |
| cis-1,3-Dichloropropene     | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 95%      | 60%   | 140%           |
| 1,1,2-Trichloroethane       | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 100%     | 70%   | 130%           |
| Toluene                     | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 99%               | 80%         | 120%           |          |             |                | 100%     | 70%   | 130%           |
| Dibromochloromethane        | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 98%      | 70%   | 130%           |
| Ethylene Dibromide          | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 97%      | 70%   | 130%           |
| Tetrachloroethene           | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 98%               | 80%         | 120%           |          |             |                | 88%      | 70%   | 130%           |
| 1,1,1,2-Tetrachloroethane   | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 98%      | 70%   | 130%           |
| Chlorobenzene               | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 98%      | 70%   | 130%           |
| Ethylbenzene                | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 95%      | 70%   | 130%           |
| m&p-Xylene                  | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 98%      | 70%   | 130%           |
| Bromoform                   | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 93%      | 70%   | 130%           |
| Styrene                     | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 94%      | 70%   | 130%           |
| 1,1,2,2-Tetrachloroethane   | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 97%      | 70%   | 130%           |
| o-Xylene                    | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 99%      | 70%   | 130%           |
| 1,3-Dichlorobenzene         | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 95%      | 70%   | 130%           |
| 1,4-Dichlorobenzene         | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 97%      | 70%   | 130%           |
| 1,2-Dichlorobenzene         | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 94%      | 70%   | 130%           |
| 1,2,4-Trichlorobenzene      | 65753 | 7586225   | <0.05  | <0.05  | NA    | < 0.05          | 100%              | 80%         | 120%           |          |             |                | 90%      | 70%   | 130%           |
| Bromofluorobenzene          | 65753 | 7586225   | 97     | 94     | 3.1%  |                 | 103%              | 60%         | 140%           |          |             |                | 108%     | 60%   | 140%           |
| Dibromofluoromethane        | 65753 | 7586225   | 114    | 113    | 0.9%  |                 | 98%               | 60%         | 140%           |          |             |                | 101%     | 60%   | 140%           |
| VH                          | 65753 | 7586225   | <10    | <10    | NA    | < 10            |                   |             |                |          |             |                |          |       |                |
| VPH                         | 65753 | 7586225   | <10    | <10    | NA    | < 10            |                   |             |                |          |             |                |          |       |                |

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

| BTEX / VPH (C6-C10) Soil       |       |         |       |       |    |        |      |     |      |     |     |      |
|--------------------------------|-------|---------|-------|-------|----|--------|------|-----|------|-----|-----|------|
| Methyl tert-butyl ether (MTBE) | 65753 | 7586230 | <0.1  | <0.1  | NA | < 0.1  | 100% | 80% | 120% | 89% | 70% | 130% |
| Benzene                        | 65753 | 7586230 | <0.02 | <0.02 | NA | < 0.02 | 100% | 80% | 120% | 99% | 70% | 130% |
| Toluene                        | 65753 | 7586230 | <0.05 | <0.05 | NA | < 0.05 | 99%  | 80% | 120% | 99% | 70% | 130% |
| Ethylbenzene                   | 65753 | 7586230 | <0.05 | <0.05 | NA | < 0.05 | 100% | 80% | 120% | 93% | 70% | 130% |

#### **AGAT** QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 12 of 25



## **Quality Assurance**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGEO03082-01.007

#### SAMPLING SITE:

AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston

SAMPLED BY:

### **Trace Organics Analysis (Continued)**

|                        |       |         |        |         |      | -               | -        |             |                | -        |             |                |          |             |                |
|------------------------|-------|---------|--------|---------|------|-----------------|----------|-------------|----------------|----------|-------------|----------------|----------|-------------|----------------|
| RPT Date: Jun 03, 2016 |       |         | C      | UPLICAT | E    |                 | REFEREN  | ICE MA      | TERIAL         | METHOD   | BLANK       | SPIKE          | MAT      | RIX SPI     | KE             |
| PARAMETER              | Batch | Sample  | Dup #1 | Dup #2  | RPD  | Method<br>Blank | Measured | Acce<br>Lir | ptable<br>nits | Recovery | Acce<br>Lin | ptable<br>nits | Recovery | Acce<br>Lir | ptable<br>nits |
|                        |       | Ia      |        |         |      |                 | value    | Lower       | Upper          |          | Lower       | Upper          |          | Lower       | Upper          |
| m&p-Xylene             | 65753 | 7586230 | <0.05  | <0.05   | NA   | < 0.05          | 100%     | 80%         | 120%           |          |             |                | 98%      | 70%         | 130%           |
| o-Xylene               | 65753 | 7586230 | <0.05  | <0.05   | NA   | < 0.05          | 100%     | 80%         | 120%           |          |             |                | 101%     | 70%         | 130%           |
| Styrene                | 65753 | 7586230 | <0.05  | <0.05   | NA   | < 0.05          | 100%     | 80%         | 120%           |          |             |                | 95%      | 70%         | 130%           |
| VPH                    | 65753 | 7586230 | <10    | <10     | NA   | < 10            |          |             |                |          |             |                |          |             |                |
| VH                     | 65753 | 7586230 | <10    | <10     | NA   | < 10            |          |             |                |          |             |                |          |             |                |
| Bromofluorobenzene     | 65753 | 7586230 | 103    | 99      | 4.0% |                 | 103%     | 60%         | 140%           |          |             |                | 98%      | 60%         | 140%           |
| Dibromofluoromethane   | 65753 | 7586230 | 127    | 123     | 3.2% |                 | 93%      | 60%         | 140%           |          |             |                | 106%     | 60%         | 140%           |
| Toluene - d8           | 65753 | 7586230 | 120    | 115     | 4.3% |                 | 101%     | 60%         | 140%           |          |             |                | 102%     | 60%         | 140%           |

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

**Certified By:** 

ander Cernorl

#### **AGAT** QUALITY ASSURANCE REPORT (V2)

Page 13 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



# **Method Summary**

#### CLIENT NAME: TETRA TECH EBA INC PROJECT: 704-ENG.VGEO03082-01.007

#### AGAT WORK ORDER: 16V098953

**ATTENTION TO: Kalin Johnston** 

| SAMPLING SITE:        |                                | SAMPLED BY:                                      |                      |
|-----------------------|--------------------------------|--------------------------------------------------|----------------------|
| PARAMETER             | AGAT S.O.P                     | LITERATURE REFERENCE                             | ANALYTICAL TECHNIQUE |
| Soil Analysis         | 1                              |                                                  |                      |
| Antimony              | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Arsenic               | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Barium                | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Beryllium             | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Cadmium               | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Chromium              | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Cobalt                | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Copper                | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Lead                  | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Mercury               | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Molybdenum            | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Nickel                | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Selenium              | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Silver                | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Thallium              | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Tin                   | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Vanadium              | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| Zinc                  | MET-181-6102,<br>LAB-181-4008  | BC MOE Lab Manual C (SALM) and EPA 6020A         | ICP-MS               |
| рН 1:2                | INOR-181-6031                  | BC MOE Lab Manual B (pH,<br>Electrometric, Soil) | PH METER             |
| Chloride, Soluble     | LAB-181-4022,<br>INOR-181-6023 | BC MOE Lab Manual Section B                      | COLORIMETER          |
| Sodium, Soluble       | LAB-181-4022,<br>MET-181-6106  | BC MOE Lab Manual Section B                      | ICP/OES              |
| Saturation Percentage | LAB-181-4022                   | BC MOE Lab Manual Section B                      | GRAVIMETRIC          |



# **Method Summary**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGE003082-01.007

AGAT WORK ORDER: 16V098953

**ATTENTION TO: Kalin Johnston** 

| SAMPLING SITE:                 |              | SAMPLED BY:                                          |                      |
|--------------------------------|--------------|------------------------------------------------------|----------------------|
| PARAMETER                      | AGAT S.O.P   | LITERATURE REFERENCE                                 | ANALYTICAL TECHNIQUE |
| Trace Organics Analysis        |              |                                                      |                      |
| Methyl tert-butyl ether (MTBE) | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| Benzene                        | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| Toluene                        | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| Ethylbenzene                   | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| m&p-Xylene                     | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| o-Xylene                       | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| Styrene                        | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| VPH                            | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| И                              | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS/FID            |
| Bromofluorobenzene             | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS                |
| Dibromofluoromethane           | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS                |
| Toluene - d8                   | ORG-180-5100 | Modified from BC MOE Lab Manual<br>Sec D (BTEX, VPH) | GC/MS                |
| EPH C10-C19                    | ORG-180-5101 | Modified from BCMOE Lab Manual<br>Section D (EPH)    | GC/FID               |
| EPH C19-C32                    | ORG-180-5101 | Modified from BCMOE Lab Manual<br>Section D (EPH)    | GC/FID               |
| Naphthalene                    | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| 2-Methylnaphthalene            | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| 1-Methylnaphthalene            | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Acenaphthylene                 | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Acenaphthene                   | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Fluorene                       | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Phenanthrene                   | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Anthracene                     | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Fluoranthene                   | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Pyrene                         | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Benzo(a)anthracene             | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Chrysene                       | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |
| Benzo(b)fluoranthene           | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH)   | GC/MS                |



# Method Summary

### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGEO03082-01.007

#### AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston

| SAMPLING SITE:                 |              | SAMPLED BY:                                        |                      |
|--------------------------------|--------------|----------------------------------------------------|----------------------|
| PARAMETER                      | AGAT S.O.P   | LITERATURE REFERENCE                               | ANALYTICAL TECHNIQUE |
| Benzo(j)fluoranthene           | ORG-180-5102 | Modified from BC MOE Lab Manual Section D (PAH)    | GC/MS                |
| Benzo(k)fluoranthene           | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| Benzo(a)pyrene                 | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| Indeno(1,2,3-c,d)pyrene        | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| Dibenzo(a,h)anthracene         | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| Benzo(g,h,i)perylene           | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| Naphthalene - d8               | ORG-180-5102 | Modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| 2-Fluorobiphenyl               | ORG-180-5102 | modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| P-Terphenyl - d14              | ORG-180-5102 | modified from BC MOE Lab Manual<br>Section D (PAH) | GC/MS                |
| LEPH C10-C19                   | ORG-180-5101 | Modified from BCMOE Lab Manual<br>Section D (EPH)  | GC/FID               |
| HEPH C19-C32                   | ORG-180-5101 | Modified from BCMOE Lab Manual<br>Section D (EPH)  | GC/FID               |
| Chloromethane                  | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Vinyl Chloride                 | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Bromomethane                   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Chloroethane                   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Trichlorofluoromethane         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Acetone                        | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1-Dichloroethene             | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Dichloromethane                | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Methyl tert-butyl ether (MTBE) | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 2-Butanone (MEK)               | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| trans-1,2-Dichloroethene       | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1-Dichloroethane             | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| cis-1,2-Dichloroethene         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Chloroform                     | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,2-Dichloroethane             | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1,1-Trichloroethane          | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Carbon Tetrachloride           | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |



# Method Summary

### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGEO03082-01.007

#### AGAT WORK ORDER: 16V098953 ATTENTION TO: Kalin Johnston

| SAMPLING SITE:              |              | SAMPLED BY:                                        |                      |
|-----------------------------|--------------|----------------------------------------------------|----------------------|
| PARAMETER                   | AGAT S.O.P   | LITERATURE REFERENCE                               | ANALYTICAL TECHNIQUE |
| Benzene                     | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,2-Dichloropropane         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Trichloroethene             | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Bromodichloromethane        | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| trans-1,3-Dichloropropene   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 4-Methyl-2-pentanone (MIBK) | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| cis-1,3-Dichloropropene     | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1,2-Trichloroethane       | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Toluene                     | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Dibromochloromethane        | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Ethylene Dibromide          | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Tetrachloroethene           | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1,1,2-Tetrachloroethane   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Chlorobenzene               | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Ethylbenzene                | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| m&p-Xylene                  | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Bromoform                   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Styrene                     | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,1,2,2-Tetrachloroethane   | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| o-Xylene                    | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,3-Dichlorobenzene         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,4-Dichlorobenzene         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,2-Dichlorobenzene         | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| 1,2,4-Trichlorobenzene      | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Bromofluorobenzene          | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Dibromofluoromethane        | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| Toluene - d8                | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Section D (VOC) | GC/MS                |
| ∨н                          | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Sec D (VOC)     | GC/MS/FID            |



# **Method Summary**

#### CLIENT NAME: TETRA TECH EBA INC

#### PROJECT: 704-ENG.VGE003082-01.007

### AGAT WORK ORDER: 16V098953

ATTENTION TO: Kalin Johnston

| SAMPLING SITE: |              | SAMPLED BY:                                    |                      |
|----------------|--------------|------------------------------------------------|----------------------|
| PARAMETER      | AGAT S.O.P   | LITERATURE REFERENCE                           | ANALYTICAL TECHNIQUE |
| VPH            | ORG-180-5103 | Modified from BC MOE Lab Manual<br>Sec D (VOC) | GC/MS/FID            |

|                      | aboratory Use Only<br>vrival Temperature:<br>GAT Job Number.    | NUCES.            |                    | urnaround Time Required (TAT)<br>egular TAT                          | LL USY 4 - 23.8<br>ate Required: |                                |                                  | ля                           | ,<br>0F СОИТА<br>0F СОИТА<br>US (Y/N)<br>US (Y/N) | ABBMUN<br>RASERY<br>VARERY                                           |            |               |               |                 |                  |                   |                   |                 | Page of 2                                   |                                             | 0000T0                                    |
|----------------------|-----------------------------------------------------------------|-------------------|--------------------|----------------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|------------------------------|---------------------------------------------------|----------------------------------------------------------------------|------------|---------------|---------------|-----------------|------------------|-------------------|-------------------|-----------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|
|                      | Glenlyon Parkway L<br>Burnaby, BC<br>V5J 086<br>F: 778.452.4074 |                   | Report Format      | Single<br>Sample per<br>page<br>Multiple<br>R<br>Samples per<br>nage | Excel Format                     |                                | 1<br>14<br>10-50 (24. 1          | H.<br>45)<br>1/1<br>1/1      | 404/1<br>404/1<br>8 um<br>5/1                     | ALS<br>AD<br>AD<br>HEI<br>HEI                                        |            | and a date of | MANUTALIA     | ×               |                  |                   | 1 1000X           |                 | DettelTane                                  | DarlayThree                                 | Dana/Turno                                |
| received May 30/2016 | 120-8500<br>Statories P: 778.452.4000                           |                   | Report Information | 1. Name: Kalin John John John John John John John Joh                | Requirements (Please Check)      |                                | 그 IL<br>그 전<br>                  | Schedule 11 (Prease Specify) | OCME (Please Specify)<br>Other (Please Specify)   | DATE/TIME SAMPLED COMMENTS · SITE SAMPLE INFO.<br>SAMPLE CONTAINMENT | Whit 25/16 |               |               |                 |                  |                   |                   |                 | 16 Sampus Recorded by (Print Name and Supri | Surrotes Received by (Print Rums and Sign): | Samples Percoved by (Print Nume and Sept. |
| kd COC               | Labo                                                            |                   |                    |                                                                      | 100                              | LM I                           | es II/ No []                     |                              |                                                   | SAMPLE<br>MATRIX                                                     | Sal        |               |               |                 | >                |                   |                   | A               | Constrant<br>Min. 25                        | Duran Taha 7                                | Gereift ma                                |
| revis                | lede (                                                          | of Custody Record | nformation         | Kella Jamita                                                         | Pex:                             | 1-78000000 (av )-1 0/- :# 1)ec | o Same as above Y                |                              | . Fax:                                            | DRY<br>D#) SAMPLE IDENTIFICATION                                     | 12 Dupl    | 2/19 11/2     | 01-10-CHL 17/ | 174 THIS-01-2.0 | 128 THIS-DI- 5.5 | 231 -1HIS OL- 0.5 | 133 THIS OL . 1.0 | 250 THIS OL 3.0 | void by (Pont Norma and Sup);<br>P.U.V.V    | ared By (Pivit Name and Ser);               | shed By (Phot Name and Sign):             |
|                      | The second                                                      | Chain (           | Report In          | Company<br>Contact:<br>Address:                                      | Phone:<br>AGAT Quo               | Client Pro                     | Invoice T<br>Company<br>Contact: | Address                      | Phone:<br>PO/AFE#:                                | LABORATC<br>USE (LAB I                                               | 15862      | 140           | 16            | 1010            |                  |                   | e de              | >               | Samples References                          | samples Relimpus                            | Samples Hicknauk                          |

|                      | boratory Use Only<br>rival Temperature:<br>iAT Job Number: | Mess.<br>Medicine and cliff |                    | rnaround Time Required (TAT)<br>gular TAT 105 to 7 working days<br>sh TAT 102 by 2 - 100%<br>Day 3 - 50%                             | U Day 4 - 25%<br>le Beaured: | PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE<br>SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM | 7177          | · <i>P</i> J, | 7        | SB          |                                                      | ETE<br>DIAR (<br>DEC<br>OEC<br>OEC | 15/ CP<br>CP<br>Spart<br>NUMBER<br>PRESERV<br>HAZARDC |             | 2           |           |              |                  |            |                 |             |            | Page 2 of 3                                          |                                            | N <sup>™</sup> : 019601                    |
|----------------------|------------------------------------------------------------|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------|---------------|---------------|----------|-------------|------------------------------------------------------|------------------------------------|-------------------------------------------------------|-------------|-------------|-----------|--------------|------------------|------------|-----------------|-------------|------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------|
|                      | Glenlyon Parkway La<br>Burnaby, BC An<br>V5J 0B6 AG        |                             | Report Format      | Single Tu<br>Sample per Re<br>page Re<br>Muttiple Ru                                                                                 | page                         | L Included                                                                                         | જ ર           | 5) y          | #        | 481<br>19/4 | +1201<br>+1201<br>0 B                                | The star                           | Hogo<br>Long                                          |             |             |           |              |                  | VVV        |                 |             |            | Data/Tarre                                           | (hete/Tione                                | Data/Time                                  |
| received May 30/2014 | 120-8600 (<br>ratories P: 778.452.4000-1                   |                             | Report Information | 1. Name: Latr Jerriton<br>Email: Kal- Martine Worth.com<br>2. Name: Laten Routh Children Herricon<br>Email: Luce Rovers. a herri com | Requirements (Please Check)  |                                                                                                    |               |               | DRI      |             | Schedule 11. Prease Specify<br>CCME (Prease Specify) | Other (Prease Specify)             | DATE/TIME SAMPLED COMMENTS - STITE SAMPLE INFO.       | May 25/16   |             |           |              |                  |            |                 |             | <u>∧</u>   | //6 Serretures forceword by (items traine and Sept.) | Sampter Received By (Pinit Name and Bight: | Samples Recensed By (Print Name and Signit |
| sed COC              | ] Labo                                                     |                             |                    |                                                                                                                                      |                              | For. 10.                                                                                           | Yes D/ No     |               |          |             |                                                      |                                    | SAMPLE<br>MATRIX                                      | 1.9         |             |           |              | 10.00 BAL BAL B  |            |                 |             | *          | Some and                                             | Durse/These 1                              | Deta/lane                                  |
| Revi.                | 1908                                                       | <b>Custody Record</b>       | lation             | the led (134<br>Al Taherton<br>Vancauv Office                                                                                        | Fax:                         | *: 704-ENG.VGE003082                                                                               | Same as above | Skie          |          |             | Fax:                                                 |                                    | SAMPLE IDENTIFICATION                                 | 7415-02-4,0 | 7415-25-0.9 | HIS-05-10 | THIN -03-3.8 | THIS - 03 - 5.25 | 1415.01 05 | 1+15 - 04 - 1.0 | THK- 04-3.0 | 1415 54-45 | Part Name and Supr.                                  | Proc. Name and Same                        | Prot Name and Sign 2                       |
|                      |                                                            | Chain of C                  | Report Inform      | Company:<br>Contact:<br>Address:                                                                                                     | Phone:                       | AGAT Quote #:<br>Client Project #                                                                  | Invoice To    | Company:      | Contact: | Address:    | Phone:                                               | PO/AFE#:                           | LABORATORY<br>USE (LAB ID #)                          | 7586260     | 261         | 763       | Etc          | 147              | 275        | 299             | EIR         | V 315      | Sandas hainquated By P                               | Samples Netinguathed By (P                 | Sampass Rainquished By (P                  |

| in a second s | boratory Use Only<br>rival Temperature:                             | utes.                  | rnaround Time Required (TAT)<br>eular TAT (195 to 7 working davs                                     | Ish TAT Day 2 - 100%                                          | te Required:                                                       |                                  |                  |          | S/<br>SVBNI                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2  | NUMBER (<br>PRESERVE<br>PRESERVE<br>HODARDOI        |                         |                     |                    |                       |  | Page S of S                                                                       | N <sup>6</sup> . 010000                                  |                                                    |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|------------------|----------|-------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-------------------------|---------------------|--------------------|-----------------------|--|-----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
|                                                                                                                 | slenlyon Parkway La<br>Burnaby, BC Ar<br>V5J 0B6 Ar<br>178.452.4074 |                        | Report Format                                                                                        | Multiple Rt                                                   | De lincluded                                                       | 2410                             | 1 - Jar S<br>- J | )        | Het                           | n z u<br>n z<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n | 1005<br>500<br>1007                                 |                         |                     |                    | 14441                 |  | Duta/Tane                                                                         | DetayTime                                                | Deta/Timo                                          |
| 1 COC received May 30/16                                                                                        | 120 · 8600 6<br>aboratories P: 778,452,4000 • F                     |                        | Report Information<br>1. Name: Lalin Johnston, Ackettel com-<br>Email: Kel 1 Johnston, Ackettel com- | 2. Name: Louis Remedie<br>Email: Lucar Hon teller telukel com | Requirements (Please Check)       BC CSR Soli       BC CSR - Water |                                  |                  |          | Schedule 11. (Please Specify) | CCME (Please Specify) Other (Please Specify)                        | IPLE DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO. | 1 An 8/16               |                     |                    |                       |  | April mine 21/16 Tampian bacamed by (Print Name and Sept.                         | duy Turles 🕴 Samples Nexcened By (Phni Nexne and Segnit: | No. 7 one Samples Received by (Pmi Nume and Sign). |
| revised                                                                                                         | A GGAT L                                                            | hain of Custody Record | eport Information<br>company: I dra Tock G34<br>contant:                                             | ddress: Ur cour and                                           | Hone: Fax: Fax:                                                    | voice To Same as above Yes 2/ No | company:         | iontact: |                               | hone: Fax: 0./AFE#:                                                 | LABORATORY SAMPLE IDENTIFICATION SAME               | 586319 -1HIS-05- 0.25 S | 320 +115 - 05 - 0.5 | 323 THE - 05 - 1.5 | V 326 THIS- 05- 3.5 % |  | Prese Reinforcement (3) (Privi Name profisions<br>Love 3) [R.1.3] [R.1.3] [C.1.4] | Durin Restinguistical By (Phint: Natione and Signit      | ngeres Restingueuroed Dy (Print) Remo and Dight:   |

| Laboratory Use Only<br>Arrival Temperature: | AGAT Job Number:           | NOUSS: MAY 25 PAGE 63          |                    | Turnaround Time Required (TAT)                    | Rush TAT 🗌 Day 2 - 100%                                   | □ Day 4 - 25%<br>Date Required: | PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE<br>SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM |                   |                              |              |          | SH3                         |                       |                        | NUMBER (<br>PRESERVE<br>PRESERVE                                    |             |          |                 |                      |                  |                  |                                    |                 |                   | Page of S                                                        | o<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DOGRTO :                                       | Date Revised: July 16, 2015  |
|---------------------------------------------|----------------------------|--------------------------------|--------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|-------------------|------------------------------|--------------|----------|-----------------------------|-----------------------|------------------------|---------------------------------------------------------------------|-------------|----------|-----------------|----------------------|------------------|------------------|------------------------------------|-----------------|-------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------|
| Glenlyon Parkway<br>Burnaby, BC<br>V5J 0B6  | F: 778.452.4074            |                                | Report Format      | Single<br>Sample per                              | Aultiple<br>Samples per                                   | page                            | L Excel Format<br>Included                                                                         |                   |                              |              |          |                             |                       |                        |                                                                     |             |          |                 |                      |                  |                  |                                    |                 |                   | Date/Time                                                        | Date/Time                                                               | Date/Time                                      |                              |
| 120 - 8600                                  | alUIIes<br>P: 778.452.4000 |                                | eport Information  | Name: Kalin Johnson a toletuh can                 | Name: Luco Kon ella<br>Email: Lucio Henrello ellafed. con | equirements (Please Check)      | BC CSR Soil                                                                                        |                   |                              |              | DRL      | chedule 11 (Please Specify) | CCME (Please Specify) | Other (Please Specify) | ATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO.<br>SAMPLE CONTAINMENT | Mun 25/16   |          |                 |                      |                  |                  |                                    |                 | >                 | Samples Received By (Print: Name and Sign):                      | Samples Received By (Print Name and Sign):                              | Samples Received By (Print Name and Sign):     |                              |
|                                             | ranni                      |                                | ~                  | <del>, , , , , , , , , , , , , , , , , , , </del> |                                                           |                                 |                                                                                                    |                   |                              |              | 1        | 0                           | 12                    |                        | SAMPLE<br>MATRIX D                                                  | Tes         | 5 -      |                 |                      | -                | >                |                                    |                 | A                 | Wey 25/                                                          | Date/ IIge                                                              | Date/Time                                      |                              |
| E E E                                       |                            | <b>Chain of Custody Record</b> | Report Information | Company: The Ref BA                               | Address: Upon any Othe.                                   | Phone: Fax:                     | AGAT Quote #:                                                                                      | Client Project #: | Invoice To Same as above Yes | Company: SAA | Contact: | Address:                    | Phone: Fax:           | PO/AFE#:               | LABORATORY<br>USE (LAB ID #) SAMPLE IDENTIFICATION                  | 75&207 0up1 | 2010 LIZ | 221 7415-01-0.5 | 0 - 1 - 10 - SIHL ST | 228 7415-01-3.5. | 230 7415-01-4.75 | 231 +415-02-0.5<br>722 +115-02-0.5 | 257 +415-00-2.0 | V 258 TH15-0L-3.0 | Samples finituations by (Smithame and Sign):<br>L. L.P.M. C.U.V. | Samples Relinquished By (Print Name and Sign):                          | Samples Relinquished By (Print Name and Sign): | Document #: DIV-186-1500.003 |

| Laboratory Use Only | Arrival Temperature: 16/09/99/53 | Notes:                  | MAY 25 PW4148      | Turnaround Time Required (TAT)<br>Regular TAT I 5 to 7 working days<br>Rush TAT 1 Day 2 - 100%<br>Day 3 - 50%                                 | Date Required: Date Required: PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM |                                       |          |                      | 2<br>AEBS                    |                       | 19 <b>20</b>           | Hold for:<br>PRESERV                                                 |                          |                 |                 |                  |                     |               |                   |                |                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page Z of 3                                                                                                                       | No.                                              | TAARTA                                          | Dure Reviser: July 16, 2015  |
|---------------------|----------------------------------|-------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|----------------------|------------------------------|-----------------------|------------------------|----------------------------------------------------------------------|--------------------------|-----------------|-----------------|------------------|---------------------|---------------|-------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------|
| leniyon Parkway     | Burnaby, BC<br>V5J 0B6           |                         | Report Format      | Single<br>Sample per<br>page<br>Multiple                                                                                                      | bage<br>É Excel Format<br>Included                                                                                            |                                       |          |                      |                              |                       |                        |                                                                      |                          |                 |                 |                  |                     |               |                   |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time                                                                                                                         | Date/ Intrie                                     | Date/Time                                       |                              |
| 120 - 8600 G        | ooratories                       |                         | Report Information | 1. Name: Latin Johnston<br>Email: Latin Johnstone policity. con<br>2. Name: Lucin Henricht<br>Email: Lucio Kongeler Conficture Conficture com | Requirements (Please Check)       BC CSR Soil       AI                                                                        |                                       |          |                      | Schedule 11 (Please Specify) | CCME (Please Specify) | Other (Please Specify) | DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO.<br>SAMPLE CONTAINMENT | Mry 25/16                |                 |                 |                  |                     |               |                   |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samples Received By (Print Name and Sign):<br>Markey Control of the Name and Sign):<br>Cammae Providend BL (Print Name and Sign): |                                                  | Samples Received by (trimt Name and Sign):      |                              |
|                     | THE TAP                          | Chain of Custody Record | Report Information | Company: Tohe Ted CRAT<br>Contact: His Tehesten<br>Address: Vancouve Office                                                                   | Phone: Fax: Fax: Client Project #: Client Project #:                                                                          | Invoice To Same as above Yes 1 / No □ | Company: | Contact:<br>Address: |                              | Phone: Fax:           | PO/AFE#:               | LABORATORY SAMPLE IDENTIFICATION SAMPLE USE (LAB ID #)               | 7586260 THIS-02-4.0 Juil | 261 THIS-03-0.4 | 263 ++15-03-1.0 | 212 7412 -02-2.0 | Z14 +415 -03 - 5.25 | 275 745-04-05 | 299 ALS - 04 -1:0 | 301 745-09-2.0 | 513 745.04-3.9 | · 1 (1/2 M - 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / | Samptes Relinquistand Sk (Print Name and Sign);<br>ULL MARK MARK MARK MARK MARK MARK MARK MARK                                    | uddinghad indiniqualities of provincient of gip. | Samples Relinquisited by Irrint Name and Signi. | Dacument #: DIV 156-1500,003 |

Date Revised: July 16, 2015

| aboratory Use Only<br>vrrival Temperature: IL-C<br>GAT Job Number: INOOSSAS<br>votes: MAY 25 Profile | urnaround Time Required (TAT)<br>egular TAT © 5 to 7 working days<br>ush TAT © Day 2 - 100%<br>Day 3 - 50%<br>Day 4 - 25%<br>ate Required:<br>PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE<br>PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Торика                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ПО П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page 3 of 3<br>N°: 019602                                                                                                                        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Glenlyon Parkway<br>Burnaby, BC<br>V5J 0B6<br>F: 778.452.4074<br>Report Format                       | Single<br>Sample per<br>page<br>KMultiple<br>R<br>Samples per<br>page<br>Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time<br>Date/Time<br>Date/Time                                                                                                              |
| Dratories<br>P: 778.452.4000 -                                                                       | 1. Name: <u>Min Johnston</u><br>Email: <u>Folin Inhiston</u><br>2. Name: <u>Luca Honelle toletul.com</u><br>Email: <u>Luca Honelle toletul.co</u><br>Requirements (Please Check)<br>BC CSR Soil BC CSR - Water<br>DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IL     AW       IL     AW       IL     IW       IL     IW       IL     IW       IL     IW       IL     IW       IL     IN       IN     IN       IN | May 25/16 SAMPLE CUNIANNMENI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Samples Received By (Print Name and Sign):<br>Samples Received By (Print Name and Sign):<br>Samples Received By (Print Name and Sign):           |
| Record Labo                                                                                          | red that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Same as above Yes L/ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HISTOS- 0.25 Sal<br>Br-05- 0.25 Sal<br>Br-05- 1.5<br>Br-05- 1.5<br>Br-05- 2.0<br>K-05- 2.0<br>K-05- 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date/Time.                                                                                                                                       |
| Chain of Custody<br>Report Information                                                               | Company: Contact: Con | Invoice To<br>Company:<br>Contact:<br>Address:<br>Phone:<br>Po/AFE#:<br>LABORATORY<br>SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 15863319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 1586319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863319 15863329 15863329 15863329 15863329 15863329 1586332900000000000000000000000000000000000 | Samples Relinquished By Print Name and Sight<br>Samples Relinquished By (Print Name and Sight)<br>Samples Relinquished By (Print Name and Sight) |

.



### SAMPLE INTEGRITY RECEIPT FORM - BURNABY

| Work Order # | 16/098953 |
|--------------|-----------|
|--------------|-----------|

| Receiving Basics:<br>Received From:                                                                                                                                                                                  | Waybill #:                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| SAMPLE QUANTITIES:<br>Coolers: Containers:                                                                                                                                                                           | 34                                                                                                                     |
| TIME SENSITIVE ISSUES:<br>Earliest Date Sampled: <u>האיץ על גע</u> יין                                                                                                                                               | ALREADY EXCEEDED? Yes No                                                                                               |
| NON-CONFORMANCES:<br>3 temperatures of samples* and average of a<br>sample ID's) *use jars when available<br>(1) $5 + 22 + 15 = 14$ °C (2) $13 + 17 + 25$<br>Was ice or ice pack present: Yes N<br>Integrity Issues: | each cooler: (record differing temperatures on the CoC next to<br>$= 18 \circ C(3) + + = - \circ C(4) + + = - \circ C$ |
| Account Project Manager:                                                                                                                                                                                             | have they been notified of the above issues: Yes No                                                                    |
| Whom spoken to:                                                                                                                                                                                                      | Date and Time:                                                                                                         |
| Additional Notes:                                                                                                                                                                                                    |                                                                                                                        |
| Decument # SP 196 0504 004                                                                                                                                                                                           | Deep 4 of 4                                                                                                            |

Document #: SR-186-9504.001 Revision Date: July 9, 2014

Page 1 of 1