VANCOUVER FRASER PORT AUTHORITY

PHASE II ENVIRONMENTAL SITE ASSESSMENT FRASER SURREY PORT LANDS - TRANSPORTATION IMPROVEMENTS, SURREY, BC

FEBRUARY 25, 2021

WSP FILE NO.: 20M-00758-00 PHASE 600

PHASE II ENVIRONMENTAL SITE ASSESSMENT

FRASER SURREY PORT LANDS -TRANSPORTATION IMPROVEMENTS, SURREY, BC

VANCOUVER FRASER PORT AUTHORITY

PROJECT NO.: 20M-00758-00 DATE: FEBRUARY 2021

WSP UNIT 100 20339 96TH AVENUE LANGLEY, BC, CANADA VIM 0E4

T 604-533-2992 F 604-533-0768 WSP.COM

UNIT 100 20339 96TH AVENUE LANGLEY, BC, CANADA VIM 0E4

T 604-533-2992 F 604-533-0768 wsp.com

February 25, 2021

Vancouver Fraser Port Authority 100 The Pointe, 999 Canada Place, Vancouver, B.C. Canada V6C 3T4

Attn: Vinil Reddy

Subject: Phase II Environmental Site Assessment at Fraser Surrey Port Lands Transportation Improvements, Surrey, British Columbia, Canada

WSP Canada Inc. (WSP) is pleased to submit two (2) copies of the Phase II Environmental Site Assessment report for the above-referenced property.

As a Canadian multi-national company, WSP is one of the world's leading engineering and consulting firms. Our scientific expertise spans a full range of services including environmental, geotechnical, metallurgical, materials and building sciences, as well as industrial hygiene, industrial compliance monitoring and other specialty scientific and engineering-related services. Please visit our website at www.wsp.com for details regarding our comprehensive services, our client testimonials, and our core values, which focus on serving and protecting our clients' best interests.

We trust that the enclosed report meets your current requirements. If you have any questions regarding this project, the enclosed reports, or our services, please do not hesitate to call the undersigned at (604) 533-2992.

Thank you for utilizing our professional services. We look forward to serving your future environmental and engineering needs.

Sincerely,

Marina Makovetski, P. Ag. Environmental Scientist

WSP ref.: 20M-00758-00

SIGNATURES

PREPARED BY

Rory Chudley, B.Tech.

Environmental Technician

Marina Mente etski, P. Ag. Environmental Science

REVIEWED BY

Jas Minhas, R.P.Bio. Environmental Toxicologist

This report was prepared by WSP for the account of Vancouver Fraser Port Authority, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Background	1
2	PHASE II ESA PROCEDURE	3
2.1	Objective	3
2.2	Scope of Work	3
2.3	Regulatory Framework	4
3	SITE DESCRIPTION	5
4	APPLICABLE STANDARDS	7
5	INVESTIGATION SCHEDULE & METHODOLOGY	.9
5.1	Naming Conventions	9
5.2	Drilling and Soil Sampling	9
5.3	Monitoring Well Installation	10
5.4	Development & Purging of Monitoring Wells	10
5.5	Groundwater Sampling	10
5.6	Soil Vapour Sampling	11
6	QUALITY ASSURANCE / QUALITY CONTROL	13
6.1	QA/QC for Analytical Data	.13
7	GENERAL FIELD OBSERVATIONS	15
7.1	Field Work Schedule	.15
7.2	Soil Stratigraphy & Drilling Observations	.15
7.3	Soil-Odour & Soil-Gas Measurements	.16
7.4	Monitoring Well Installation & Borehole Backfilling	.16
7.5	Groundwater Development & Sampling	.17

7.6	Groundwater Monitoring Well Vapours	17
7.7	Site Hydrogeology	17
7.8	Vapour Probe Purging & Sampling	18
8	INVESTIGATION LOCATIONS & ANALYTICAL RESULTS	20
8.1	Field QA/QC	
8.2	Laboratory QA/QC	22
9	DISCUSSION AND CONCLUSIONS	24
10	RECOMMENDATIONS	26
11	PROFESSIONAL STATEMENT	27
11.1	Roles and Responsibilities	27
12	CLOSURE	28
13	STANDARD LIMITATIONS	. 29

TABLES IN REPORT

TABLE 1-1	SUMMARY OF IDENTIFIED APEC AND	_
	PCOCS	1
TABLE 3-1	SUMMARY OF SITE INFORMATION	5
TABLE 5-1	NAMING CONVENTIONS	9
TABLE 5-2	GROUNDWATER SAMPLING CONTAINERS,	
	PRESERVATIVES, AND PROTOCOLS	10
TABLE 5-3	GROUNDWATER SAMPLING PROGRAM	11
TABLE 6-1	FIELD & LABORATORY QA/QC	13
TABLE 7-1	SCHEDULE FOR FIELD ACTIVITIES	15
TABLE 7-6	SOIL PROBE INTEGRITY TESTS	18
TABLE 7-7	SOIL-VAPOUR PARAMETERS	19
TABLE 8-1	SUMMARY OF SOIL, SOIL VAPOUR AND	
	GROUNDWATER SAMPLES WITH	
	ASSOCIATED AECS AND COCS	20
TABLE 9-1	SUMMARY OF IDENTIFIED AEC AND COCS	24

FIGURES

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Site Plan Showing Soil Analytical Results

Figure 4: Site Plan Showing Groundwater Analytical Results

Figure 5: Plan Showing Soil Vapour Analytical Results

Figure 6: Groundwater Elevation Flow Direction

APPENDICES

APPENDIX A: FIGURES

APPENDIX B: PHOTOGRAPHS

APPENDIX C: BOREHOLE AND MONITORING WELL LOGS

APPENDIX D: ANALYTICAL DATA TABLES

APPENDIX E: CHAIN OF CUSTODY FORMS AND

LABORATORY CERTIFICATES

APPENDIX F: REGULATORY FRAMEWORK & ASSESSMENT STANDARDS

1 INTRODUCTION

Mr. Vinil Reddy, on behalf of Vancouver Fraser Port Authority (VFPA), retained WSP Canada Inc. (WSP) to conduct a Phase II Environmental Site Assessment (ESA) within the proposed transportation improvement project at Fraser Surrey Port Lands in Surrey, BC (herein referred to as "Site" or "Subject Site"). The intrusive environmental investigation was conducted at the area of potential environmental concern (APEC) and areas of environmental concern (AECs) identified during the Phase I ESA¹ completed by WSP in February 2021.

We understand that VFPA requires this Phase II ESA for project and environmental (PER) review prior to the construction activities associated with the road improvements at Fraser Surrey Port Lands. We also understand that this report is not being submitted to the Ministry of Environment and Climate Change Strategy (BC ENV) for the purposes of obtaining a legal instrument, such as a Certificate of Compliance or Approval-In-Principle. This report describes the work associated with the subsurface investigations and WSP's findings.

1.1 BACKGROUND

From a review of the historical records, previous environmental investigation reports, Site walkthrough notes and interview information collected during the Phase I ESA, WSP was able to establish that Surrey Fraser Port Lands area was filled and developed for commercial and industrial activities in the 1960s. Various commercial and industrial activities occupied the Site and adjoining properties, some of which were associated with storage and handling of large quantities of chemicals, fuel or hazardous waste. Based on the historical information review, one APEC and two AECs were identified at the proposed transportation improvements locations. A summary of the identified AECs and APEC and associated PCOCs in soil, vapour and groundwater is provided in the following table.

Table 1-1 Summary of Identified APEC and PCOCs

AEC/APEC NO.	AEC/APEC DESCRIPTION	REGULATED* COCS/PCOCS IN SOIL	REGULATED* PCOCS IN VAPOUR	REGULATED* COCS/PCOCS IN GROUNDWATER
APEC #1** (On-site)	A section of Timberland Road adjacent to 10619 Timberland Road (based on historical and current activities and previous environmental investigations and BC Site Registry (Site IDs	PCOCs: BTEX, F1 - F4, VOCs, PAHs, phenols and metals	<u>PCOCs:</u> BTEX, F1, F2, trimethylbenzenes, naphthalene, and straight-chain alkane compounds.	PCOCs: BTEX, FI F4, VOCs, PAHs, phenols and metals (arsenic and sodium).

¹ Phase I ESA, Fraser Surrey Port Lands – Transportation Improvements, Surrey, British Columbia. Prepared for VFPA by WSP. Dated February 4, 2021 (File No.: 20M-00758-00).

AEC/APEC NO.	AEC/APEC DESCRIPTION	REGULATED* COCS/PCOCS IN SOIL	REGULATED* PCOCS IN VAPOUR	REGULATED* COCS/PCOCS IN GROUNDWATER
	16719 - Across from 10619 Timberland Road and 23211 - Surrounds Timberland Road).			
AEC #2 (On-site)	10440 Timberland Road - due to former operations of CTL Steel and based on previous environmental investigations.	COCs: chromium, copper and nickel, LEPH and F2 (based on SLR's Phase II ESA, 2011)	PCOCs: BTEX, F1, F2, trimethylbenzenes, naphthalene, and straight-chain alkane compounds.	COCs: Dissolved iron (possibly elevated natural background concentration)
AEC #3 (On-site)	10520 Timberland Road - due to historical and current activities (Chemetron Railway Products and CP Yard) and previous environmental investigation (Stage 2 PSI, SNC Lavalin Environment, 2013)	<u>COCs:</u> arsenic, chromium, copper, phenanthrene.	PCOCs: BTEX, F1, F2, trimethylbenzenes, naphthalene, and straight-chain alkane compounds.	COCs: arsenic, cobalt, cadmium. Iron and manganese - possibly elevated natural background concentrations.

Notes:

*Regulated by Federal Government BTEX Benzene, toluen

BTEX Benzene, toluene, ethylbenzene, and xylene
F1 Fraction #1: normal straight-chain hydrocarbon (nC) boiling point ranges nC6 to nC10
F2 Fraction #2: normal straight-chain hydrocarbon (nC) boiling point ranges >nC10 to nC16
F3 Fraction #3: normal straight-chain hydrocarbon (nC) boiling point ranges >nC16 to nC34
F4 Fraction #2: normal straight-chain hydrocarbon (nC) boiling point ranges >nC34 to nC35+

PAHs Polycyclic aromatic hydrocarbons VOCs Volatile organic compounds

WSP recommended to conduct an intrusive field investigation within two AECs and APEC prior to proposed transportation improvement construction activities to assess the quality of environmental media (soil, groundwater and soil vapour) and to make recommendations on contaminated soil (if any) disposal.

^{**} Based on the information provided by the Client, a Notice of Actual or Potential Migration of contaminants issued for 10619
Timberland Road was pertinent to dissolved arsenic and sodium exceedances of drinking water standards at the southwest portion of the lot. Additional information is required to assess potential risk to the environmental conditions of the Site.

2 PHASE II ESA PROCEDURE

2.1 OBJECTIVE

The objective of the Phase II ESA was to assess the presence or absence of soil, soil vapour and groundwater contamination at the Site due to the identified PCOCs/CoCs within the APEC/AECs. The investigation was conducted in general accordance with the Canadian Standards Association guidance documents CAN/CSA-Z769-00 (R2013) and CCME Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment (2016).

2.2 SCOPE OF WORK

WSP's scope of work for conducting Phase II ESA was as follows:

- 1 Complete a BC One Call and retain the services of a private utility locator prior to commencing any intrusive investigations at the Site.
- 2 Retain the services of a hydro-vacuum truck to excavate top 1.5m of soil from all boreholes to avoid potential utility strike.
- 3 Retain the services of a drilling contractor for the completion of six boreholes with a truck mounted auger drill rig to a maximum depth of approximately 4.6 m below grade. Three groundwater monitoring wells were installed at the APEC/AECs identified during the Phase I ESA. Three boreholes were proposed to be completed as soil-vapour probes. Two boreholes were completed as soil-vapour probes at APEC #1 and AEC #2.
- 4 Collect soil samples from each of the borehole locations at different depths depending upon the encountered stratigraphy for potential laboratory analyses of PCOCs.
- 5 Log the encountered soil stratigraphy at all of the borehole locations.
- 6 Develop the installed monitoring wells using Waterra™ tubing and foot valves or a dedicated bailer following installation.
- 7 Complete sampling of groundwater at least 24 hrs following the well development, from the installed monitoring wells for the analyses of PCOCs.
- 8 Complete leak and flow tests prior to soil vapour sampling. Collect soil vapour samples using thermal desorption tubes and low flow pump callibrated by an environmental laboratory.
- 9 Complete a horizontal and vertical surveys of the monitoring well locations using field survey equipment to determine groundwater flow direction.

- Submit soil, soil vapour and groundwater samples collected from this investigation program to an analytical laboratory accredited by 'Canadian Association for Laboratory Accreditation', which has BC Ministry of Environment and Climate Change Strategy recognized procedures for laboratory analyses.
- 11 Compare the analytical results to the applicable standards.
- 12 Prepare a report summarizing the Site activities, methodology and results of the Phase II ESA and comparing the results to applicable CCME and BC CSR standards upon completion of the investigation program.

WSP completed the proposed scope of work with the exception of one soil probe installation within AEC #3. Due to the shallow groundwater level in the borehole (0.7m below site grade) and unpaved surface, there was a concern that the soil vapour sample may not be representative as a result of short circuiting of ambient air underground.

2.3 REGULATORY FRAMEWORK

In British Columbia, Phase II ESA is conducted to meet the requirements of the currently applicable provincial EMA and the CSR and CSA Standard CAN/CSA-Z769-00 (R2013). Detailed background on the Regulatory Framework and Assessment Standards is included in Appendix F and Section 4 of the report.

3 SITE DESCRIPTION

As required by the CSA Standard CAN/CSA-Z769-00 (R2013), the Site's legal information is provided below:

Table 3-1 Summary of Site Information

Civic Address	10619 Timberland Road	10610 and 10650 Timberland Road	10550 Timberland Road (civic addresses 11440 & 10520 Timberland Road	11015 Elevator Road	11015 Elevator Road	9815 Robson Road
Current Legal Description	LOT3 District Lots 10 Plan EPP83386 NWD BCAGROUP 2 & DL11	LOT 1 DISTRICT LOT 9, 10 and 11 PLAN BCP31356 NWD BCAGROUP 2	LOT 1 DISTRICT LOT 12 and 13 PLAN GROUP 2 AND OF THE BED OF THE FRASER RIVER NWD PLAN LMP29318	LOT 2 DISTRICT LOT 14 GROUP 2 AND OF THE BED OF THE FRASER RIVER NWD PLAN LMP29318	LOT 3 SECTION 34 AND 35 BLOCK 5 NORTH RANGE 3 WEST NWD PLAN LMP29318	LOT 5 SECTION 34 AND 35 BLOCK 5 NORTH RANGE 3 WEST NWD PLAN LMP29318
Parcel Identifier (PID)	030-643-864	027-132-145 and 006-173-527	023-512-512	023-512-521	023-512-539	023-512-555
Current Title Holder	Southern Railway of Vancouver Island Limited, Inc. No. BC1146758	Her Majesty The Queen In Right of Canada as Represented by The Minister of Transport, C/O The Fraser River Port Authority	Fraser River Harbour Commission	Fraser River Harbour Commission	The Crown in Right of Canada C/O The Fraser River Harbour Commission	Fraser River Harbour Commission
Current Occupant	Mainland Sand & Gravel Ltd.	Westran Intermodal Ltd.	CP Rail, IDC Distribution Services and Westran Intermodal Ltd.	IDC Distribution Services	DP World	CanWel Building Materials Group Ltd. / Western Cleanwood Preservers Ltd.
Watercourse ²	Ditch - 93m in length; sensitivity - B	Ditch - 158m in length, Sensitivity - C	Ditch along Timberland Road - Sensitivity B	Ditch - 8m, Sensitivity B	Shadow Brook - 85m, Sensitivity A; several ditches - Sensitivity A and C	Shadow Brook - 85m, Sensitivity A; several ditches - Sensitivity A and C
Coordinates	N49° 11′ 12.06 "/ W122° 54′ 50.70" (at approximately the centre of the Site)					
Zoning	Industrial Land					

Based on the information provided in the City of Surrey GIS COSMOS, October 2020.

Notes:

General Guidance to Construction Over or Near Watercourses, the City of Surrey Engineering Department describes sensitivity classes as follows:

Class A - Indicate year-round presence of fish

Class B – Provide valuable food and nutrients to downstream fisheries watercourses but do not support salmon or regionally significant fish. They are considered fish habitat.

Class C - Typically ditches with insignificant food and nutrient input and do not support fish.

The Site is designed as a roadway alignment, irregular in shape and approximately 2.5km in length. Approximately 70% of the Site is currently used as a roadway (Timberland Road and Robson Road), and the remainder of the Site (the corridor) is currently occupied by several commercial and industrial activities. Phase II ESA focused on intrusive investigation within two lots highlighted in grey in the above table as the APEC and AECs fall within these two legal lots.

The Site layout is depicted on Figure 2, Appendix A.

4 APPLICABLE STANDARDS

At the time of preparation of this report, the Site was used for industrial purposes (roadway) and/or was proposed to be developed with a road and was located on Federal Land. As such, the following standards/guidelines would apply to the Site:

SOIL

Federal Standards:

- Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Environment and Human Health, 1999
- Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil, 2008 for coarse soil

<u>Provincial Standards are provided as guidance and are applicable for soil intended to be disposed off-site, within provincial land:</u>

CSR IL standards - Site Specific factors include:

- Intake of contaminated soil applicable to all sites in BC;
- Toxicity to soil invertebrates and plants applicable to all sites in BC;
- Groundwater used for drinking water applicable to all sites in BC, unless the underlying aquifers' hydraulic conductivity, quality and/or yield proves that it is not capable of being a drinking water source; and
- Groundwater flow to surface water used by freshwater and marine aquatic life, since Fraser River and other surface water bodies are present within 500m radius from the Site.

GROUNDWATER

Federal Standards:

- Canadian Water Quality Guidelines for the Protection of Aquatic Life (freshwater and marine life)³.
- *Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites* Tier 1 Industrial Land
 Use and pathway specific Tier 2 conditions including:
 - Inhalation based on soil type (coarse or fine);
 - Soil organisms, direct contact with contaminated groundwater;
 - Groundwater transport to surface water at least 10m from the contamination and subsequent ingestion by wildlife.
 - Guidelines for Canadian Drinking Water Quality (Health Canada, September 2020)⁵.

³ All values to be multiplied by an assumed 10x dilution factor for the groundwater entering surface water body. For contaminated groundwater within 10m of a surface water body, the Canadian Water Quality Guidelines for the Protection of Aquatic Life should be applied directly.

Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites, November 2012 (Update of the May 2010 version).

⁵ Applied to groundwater that is used as a potable water source or to groundwater defined as a potential potable water source by the province or other agency with jurisdiction over drinking water issues.

Note: *Federal Interim Groundwater Quality Guidelines that are protective of aquatic habitat assume transport of contaminants through unconsolidated soils. If transport occurs in very coarse textured soils (where median particle diameter is greater than 75um) or fractured bedrock, then the CEQG for the Protection of Aquatic Life should be applied. More detailed soil type assessment should be conducted for the Site to determine true applicability of the standards for groundwater.

Provincial Standards:

- CSR Drinking Water (DW) applicable to all sites in BC, unless the underlying aquifers' hydraulic conductivity, quality
 and/or yield proves that it is not capable of being a drinking water source;
- CSR Freshwater and Marine Aquatic Life (AW-m&f); and
- CSR Groundwater standards for EPHw₁₀₋₁₉ and VHw₆₋₁₀ apply to all sites irrespective of water uses.

SOIL VAPOUR

Federal Standards:

 Federal Contaminated Site Risk Assessment in Canada, Part VII: Guidance for Soil Vapour Intrusion Assessment at Contaminated Sites.

Provincial Standards:

CSR Industrial Land Use

For soil classification/disposal purposes, the BC Hazardous Waste Regulation (HWR) standards/criteria also apply to the Site.

5 INVESTIGATION SCHEDULE & METHODOLOGY

5.1 NAMING CONVENTIONS

WSP developed a borehole sample naming convention as follows:

Table 5-1 Naming Conventions

Borehole Name	Description

20: Year borehole was drilled
BH: indicated a borehole drilled MW: Indicates a monitoring well installed
#: sequential number of borehole drilled

If a sample is collected from a borehole, the following sample name is used:

20-MW2@0.2m - sample collected from monitoring well #2 at a depth of 0.2m below site grade.

If a groundwater sample is collected from a monitoring well, the following sample name is used:

20-MW2 - sample is collected from monitoring well #2.

5.2 DRILLING AND SOIL SAMPLING

All boreholes were excavated using a hydro-vacuum truck to 1.8m below site grade. A solid stem auger drill rig was employed to complete the boreholes for this investigation. During drilling, auger flights were advanced in approximately 1.5m lengths to allow for sampling and visual logging of soil conditions. Soil logging was conducted by visually observing soil conditions when the auger flights were removed from the boreholes during drilling. Grab soil samples were collected from the auger flights and immediately transferred into laboratory-supplied pre-cleaned jars.

The laboratory-supplied pre-cleaned glass jars had Teflon lids. Indelible markers were used for marking the lids and the soil jars with the appropriate sample identification number or reference. WSP's field engineer used new nitrile powder-free gloves before the collection of each soil sample. Soil samples were also transferred into plastic bags and were allowed to equilibrate with the ambient temperature after which the field engineer monitored the soil gas in the plastic bags using a Photoionization Detector (PID) MiniRAE 3000™. The PID was rented from Pine Environmental Canada LLC of Burnaby, BC (Pine). Headspace vapour readings for soil samples were recorded in the field notes. Considerations for selection of soil samples for laboratory analyses were field indications of potential contamination such as headspace readings, suspect staining, odour, soil stratigraphic layer, location of the soil sample with respect to the water table and the potential for contamination in different layers. Soil samples were submitted to ALS Environmental in Burnaby, BC, for laboratory analyses of PCOCs/COCs.

5.3 MONITORING WELL INSTALLATION

Monitoring wells were constructed inside hollow-stem auger flights with of 2" (51 mm) slotted and solid PVC pipes. The slotted pipe was used in the screened portion of the monitoring well in the vicinity of the groundwater table. Bentonite seals were installed between approximately 0.3m above the screen to the surface. These seals served to provide a surface seal and hydraulically isolate the screen. Silica sand was used to fill the screened portion of the well. Monitoring wells were completed with flush to grade road boxes and encased in concrete in order to protect the PVC monitoring well casings.

5.4 DEVELOPMENT & PURGING OF MONITORING WELLS

The wells were developed by removing a minimum of five casing volumes of water using a Waterra™ foot valve and tubing. The monitoring wells were left to settle for a minimum of 24 hours before groundwater sampling was attempted.

5.5 GROUNDWATER SAMPLING

WSP used low-flow groundwater sampling techniques using a peristaltic pump for both purging and sampling the groundwater. Prior to sampling, a volume of water equal to one casing volume was purged from the monitoring well at a rate of approximately 250ml/min. After purging the correct volume of water from the well, pH, temperature, and conductivity measurements were recorded at fixed volume intervals. Groundwater samples were collected for PCOCs when the difference between two consecutive readings of pH, temperature and conductivity were not greater than 5%.

The peristaltic pump was used to collect groundwater samples to be analysed for LEPH, HEPH, PAH and dissolved metals. A dedicated bailer and VOC tip were used to collect the groundwater samples for VOC and VPH at each well.

The following table outlines the containers, preservatives and protocol applied to each groundwater sample type.

Table 5-2 Groundwater Sampling Containers, Preservatives, and Protocols

Parameter	Details	Sampling Protocol	
LEPH/HEPH, PAH	2 x 125ml amber glass, NaHSO4	Peristaltic Pump	
VOC, VPH, F1-F4 2 x 40 ml glass, NaHSO ₄		Plastic Bailer with VOC tip	
Dissolved Metals	125 ml plastic, HNO₃	Peristaltic Pump, field filtered	
Dissolved Mercury	40 ml glass, HCl	Peristaltic Pump, field filtered	
Chloride 250ml, plastic, no preservative		Peristaltic Pump	
Phenols 2 x 500ml amber glass, NaHSO4		Peristaltic Pump	

The groundwater sampling and analytical program is presented in the following table.

Table 5-3 Groundwater Sampling Program

Monitoring Well Parameters

20-MWI	LEPH/HEPH, PAH, VOC/VPH, F1-F4, dissolved metals, chloride, chlorinated 8 non-chlorinated phenols		
20-MW2	LEPH/HEPH, PAH, VOC/VPH, dissolved metals, chloride		
20-MW3 / 20-DUP1	LEPH/HEPH, PAH, VOC/VPH, dissolved metals, chloride		

A discussion of the results of these analyses is included in Section 0.

Once collected, the groundwater samples were stored in coolers with ice packs until they were transported to and received by the analytical laboratory. Chain of custody procedure was followed.

5.6 SOIL VAPOUR SAMPLING

Before soil vapour sampling was attempted, each vapour probe underwent both a flow/vacuum test and a leak test. The flow/vacuum test was conducted by attaching both a flow and vacuum meter while pumping air out of the probe with the attached Nylaflow TM tubing.

The leak test is designed to test the integrity of the vapour probe's surface seal by introducing a tracer gas at the contact with the ground surface and then monitoring the soil-gas for the presence of the tracer. A shroud, consisting of a 4 Litre pail sealed to the surface with hydrated granular bentonite, is placed over the test probe. Helium is introduced to fill the air space under the shroud. Helium concentration is maintained within the shroud at 50% (500,000 ppm). Soil-vapour from the probe is extracted while the Helium shroud concentration is maintained by attaching the probe tubing to a Tedlar™ bag held within a vacuum box. A sample pump calibrated to 100mL/min draws air out of the vacuum box until the pressure inside the box is less than that of the probe connection. Due to the pressure differential, vapours are drawn into the Tedlar™ bag. Once filled, the bag is removed from the box and the helium concentration in the Tedlar™ bag is measured with a helium detector and recorded. The difference in helium concentrations between the shroud and soil-vapour sample provides a ratio to compare the relative "leakage" in the sample.

WSP used a soil-vapour sampling pump provided by ALS Environmental Services in Burnaby, BC. The pump was calibrated to a flow rate of 100mL/min when the Thermal Desorption sampling tube (TD tube) was connected to the system.

Below is a diagram depicting the typical set-up for vapour sampling.

Diagram 1: Vapour Sampling Set-up

Once the sample tube was connected, the countdown timer in the pump was set to the desired sampling time period (20 minutes) as prescribed by ALS and as shown on the soil-vapour chain of custody forms in Appendix E. The pump was turned on to allow the soil-vapour to pass through the TD tube for a period of 20 minutes. Once sampling was completed, the TD tube was disconnected from the system and sealed. Swagelok™ fittings were used to seal both ends of the TD tube. Each sealed TD tube was stored in a laboratory-provided plastic container. The sample identification name, sampling date and associated project number was inscribed onto laboratory-supplied labels that are affixed to each plastic container. The plastic containers containing the soil-vapour sampling tubes were then placed into a laboratory-supplied cooler without icepacks. The samples were submitted to ALS in Burnaby, BC for analysis.

6 QUALITY ASSURANCE / QUALITY CONTROL

In order to provide confidence in the field data collected from the Site, a Quality Control/Quality Assurance (QA/QC) component was included in the sampling program. The field QA/QC component is summarized below. The laboratory chosen to conduct analyses on soil and groundwater samples collected during this project have their own internal QA/QC program, which is also briefly summarized below.

Table 6-1 Field & Laboratory QA/QC

Field QA/QC	Field equipment was cleaned, calibrated and maintained in good working condition. Common equipment was cleaned in the field, between each sampling location. New powder-free nitrile gloves were used for each sample collected. All sample containers were provided by the laboratory clean and sterile and were appropriate for the parameters analyzed. All sample containers and lids were labelled with the consultant's name (i.e., WSP), their respective sampling location identification, date and project reference number. Samples were kept cool by storing and transporting them in a laboratory-supplied cooler with ice packs. Field duplicates were collected during the investigation program to ascertain field collection QA/QC procedures. Chain-of-custody protocol was followed.
Laboratory QA/QC	ALS routinely analyses laboratory replicates, standard reference materials and method blanks as part of its internal QA/QC program. ALS also determines matrix spike recoveries (only for water samples) and surrogate spike recoveries (soil and water samples for volatiles and polycyclic aromatic hydrocarbons). Analytical results are compared to internal data quality objectives and results not meeting their internal QA/QC criteria are flagged. The laboratory results are reviewed by the chief project chemist and results are released when the data meets the internal data quality objectives of ALS.

6.1 QA/QC FOR ANALYTICAL DATA

WSP implemented a QA/QC program to evaluate the quality of sampling and analytical testing. WSP collected and submitted blind duplicate soil and groundwater samples for analyses of PCOCs along with the other soil and groundwater samples collected during the investigation program.

The results of the duplicate analyses were evaluated using a statistic called relative percentage difference (RPD). The RPD between measured concentrations of a PCOC in a sample and the measured concentrations of a PCOC in a duplicate sample was calculated as follows:

$$RPD(\%) = 100 \times ABS \frac{X_1 - X_2}{(X_1 + X_2)/2}$$

ABS = Absolute Value

X₁ = Measured concentration in the original sample

X₂ = Measured concentration in the duplicate sample

The criteria for determining field sample quality assurance are adapted from the BC Field Sampling Manual (2003);

- 1) The ratio of duplicates to total samples should be approximately 10%,
- Both parent and duplicate values must be greater than five times the laboratory detection limit (RDL), and
- RPD values >20% indicate a possible problem, and > 50% indicate a definite problem, most likely either sample contamination or lack of sample representativeness.

Because analytical error increases near the laboratory detection limit (RDL or MRL), an RPD calculation should be only applied when the measured concentration in both samples is greater than five times the reported detection limit (RDL).

If the RPD of duplicate samples is < 20%, then it would be concluded that the QA is acceptable.

If the RPD of duplicate samples ranges from >20% to <= 50%, then reasons for higher variation should be discussed. These would typically include, for instance, natural heterogeneity.

If the RPD of duplicate samples exceeds 50%, then the possibility of inadequate QA should be explicitly addressed and dealt with.

Results of the field QA/QC for soil and groundwater samples collected during this investigation are discussed in Section 8.3.

7 GENERAL FIELD OBSERVATIONS

7.1 FIELD WORK SCHEDULE

WSP completed a BC One Call before undertaking sub-surface investigations at the Site. Information obtained from the BC One Call was passed on to Quadra Utility Locating Ltd. of Surrey, BC; a private utility locator retained to assess the presence of underground utilities at the proposed investigation locations. WSP personnel were present on-site for each field activity. The following table summarizes the schedule of field activities.

Table 7-1 Schedule for Field Activities

Activity	CONTRACTOR	Date	Locations	Method
Utility Locates	Quadra Utility Locating	4 December, 2020	20-MW1 through 20- MW3	GPR (Ground Penetrating Radar) and EM (electromagnetic) scans
Hydro-vacuuming, Drilling, Monitoring Well and vapour probe Installation	Downrite Drilling	15 December, 2020	20-MW1 through 20- MW3, 20-VP1, 20- VP2	Hydro-vacuum, Solid and Hollow Stem Auger
Develop Groundwater wells	-	16 December, 2020	20-MW1 through 20- MW3	Wattera™ Tubing & Foot Valves
Sample Groundwater Monitoring Wells	-	17 December, 2020	20-MW1 through 20- MW3	Peristaltic pump & Bailer
Preparing soil vapour probes for sampling / protection from rain water	-	8 January, 2021	20-VP2	Plastic sheeting and gravel ballast
Sample soil vapour probes	-	22 January, 2020	20-VP1, 20-VP2	TD Tubes & air pump

A copy of selected photographs captured during the investigation is provided in Appendix B.

7.2 SOIL STRATIGRAPHY & DRILLING OBSERVATIONS

Detailed descriptions of the subsurface soils encountered at the borehole locations are presented in the borehole logs included in Appendix C.

The soil stratigraphy encountered within the investigated area typically consisted of 0.07m to 0.7m thick of sand & gravel or silty sand fill overlying grey fine river sand to the bottom of the boreholes at 4.6m below ground surface (bgs).

End of holes (EOH) for 20-MW1, 20-MW2, and 20-MW3 were extended to a depth of 4.6m bgs, while 20-VP1 and 20-VP2 were advanced to 0.91m bgs.

7.3 SOIL-ODOUR & SOIL-GAS MEASUREMENTS

Soil-gas concentrations were measured in soil samples collected from borehole locations and surficial soils using a PID. Results are presented in the following table.

Table 7-2 Soil Vapour Measurements

Sample ID & Depth	Soil Vapours (ppm _v)	Sample ID & Depth	Soil Vapours (ppm _v)
20-MWI@0.3m	ND	20-MW2@1.2m	ND
20-MWI@0.6m	ND	20-MW2@3.2m	ND
20-MWI@1.2m	0.2	20-MW2@4.5m	ND
20-MWI@2m	ND	20-MW3@0.3m	0.1
20-MWI@2.7m	0.1	20-MW3@0.6m	ND
20-MWI@4.4m	0.1	20-MW3@1.2m	ND
20-MW2@0.3m	0.1	20-MW3@2.2m	ND
20-MW2@0.6m	ND	20-MW3@4.5m	ND

Note: ND - below detectable limits of instrument

No hydrocarbon-like odour was observed during drilling. The highest PID soil-vapour reading was $0.2 ppm_{\nu}$ measured at 1.2 m bgs in borehole 20-MW1, and $0.1 ppm_{\nu}$ measured at 0.3 m bgs in boreholes 20-MW2 and 20-MW3. These samples were selected for analysis of PCOCs.

7.4 MONITORING WELL INSTALLATION & BOREHOLE BACKFILLING

Three boreholes were drilled and completed as monitoring wells at locations 20-MW1, 20-MW2, and 20-MW3 by Downrite Drilling as directed by WSP staff. An additional two boreholes were drilled and completed as vapour probes at locations 20-VP1 and 20-VP2.

The installation of the groundwater monitoring wells targeted the top of the saturated layer at the Site. All of the wells were completed using 1.5m of screen as close to straddling the top of the water table as field conditions would allow. All wells were finished with flush mount road boxes encased in concrete and had bentonite seals extending from 0.15m above the screen to the road boxes.

The vapour probes were installed to target the vadose (unsaturated) zone above the water table. 0.15m stainless steel screens were installed down to 0.91m bgs then encased in filter sand to 0.07m above the top of the screen. The vapour probe screens were connected to the surface with Nylaflow tubing, kinked to prevent vapour or liquid from passing through it, then sealed from the surface by granulated bentonite installed and

hydrated in thin layers. Both vapour probe heads were installed in road boxes for protection from traffic and the elements.

Drill cuttings generated from the monitoring well and vapour probe installations were placed in barrels near monitoring well 20-MW02 for later disposal.

The locations of the boreholes and installed monitoring wells are indicated on Figures 3 and 4 in Appendix A. Borehole logs showing well installation details are included in Appendix C.

7.5 GROUNDWATER DEVELOPMENT & SAMPLING

Waterra™ tubing and foot valves were used to develop the installed monitoring wells approximately 24 hours after installation. All three wells had excellent recharge and were developed until a minimum of five casing volumes of water was removed. At each monitoring well location, the water was initially grey and silty. A very slight hydrocarbon-like sheen was observed at 20-MW3.

WSP collected groundwater samples from all three wells as per our proposed methodology. One casing volume was removed from all monitoring wells prior to ensuring pH, temperature and electrical conductivity of the groundwater had stabilized.

7.6 GROUNDWATER MONITORING WELL VAPOURS

Monitoring well vapour concentrations were detected at each well using a PID. Monitoring well vapours recorded in the wells ranged from 0.1ppmv to 0.6ppmv. Table 7-3 provides the results of the headspace vapour monitoring of wells.

Table 7-3 Petroleum Hydrocarbon Vapours in Well Column

	Headspace Hydrocarbon Vapours Measured in Monitoring Wells	
Sample ID & Depth	DATE	PID (PPM _V)
20-MWI	16 December, 2020	0.6
20-MWI	17 December, 2020	0.6
20-MW2	16 December, 2020	0.1
20-MW2	17 December, 2020	0.1
20-MW3	16 December, 2020	0.1
20-MW3	17 December, 2020	0.1

ND - below detectable limits of instrument

7.7 SITE HYDROGEOLOGY

A vertical survey of the Site was performed on 22 January, 2021 by WSP. The top of the PVC pipe casings and grade elevations of the monitoring well locations were surveyed and the elevations were determined by referencing to a local benchmark (i.e., top of nut on fire hydrant near west corner of 10610 Timberland Road) assuming its elevation to be 100m above sea level. The table below summarizes the relative elevations of the top-of-pipe, grade and water table elevations for each monitoring well location installed by WSP during the investigation.

Table 7-4 Site Survey Results

Well ID	Well Grade Elevation (m)	Top of Pipe (m)	Depth to Groundwater from Top of Pipe (m)	Groundwater Elevation (m)
20-MWI	98.994	98.830	1.249	97.581
20-MW2	98.839	98.717	0.686	98.031
20-MW3	98.959	98.793	0.565	98.228

Based on the groundwater elevation data measured at the installed monitoring wells, a groundwater contour map was prepared and is presented on Figure 6 in Appendix A. The on-site groundwater gradient direction was determined to be northeast towards Manson Canal, based on groundwater elevation levels measured on 22 January 2021. The hydraulic gradient was calculated to be approximately 0.003 m/m.

7.8 VAPOUR PROBE PURGING & SAMPLING

Two vapour probes were installed onsite on December 15, 2020 by Downrite Drilling as directed by WSP staff. Vapour probe 20-VP1 was installed approximately 1.2m west-southwest of monitoring well 20-MW1, while vapour probe 20-VP2 was installed approximately 1.4m northeast of monitoring well 20-MW2. A vapour probe could not be installed near monitoring well 20-MW3 due to a shallow groundwater table in this area. The vapour probes were installed as per the proposed methodology.

The vapour probe integrity testing was conducted by Rory Chudley, B.Tech., of WSP on 22 January 2021. First, a vacuum test was conducted at each probe, followed by a leak test. The results of the integrity test results are presented in Table 7-2.

Table 7-2 Soil Probe Integrity Tests

Soil Vapour Probe	Installation Details
-------------------	----------------------

20-VP1

Drill Date	15 December 2020
Integrity Test Date	22 January 2021
Surface State	Road box in asphalt
Probe Length (cm)	15
Install Method	Auger drill
Helium Concentration in Shroud (ppm)	500,000
Helium Concentration in Tedlar Bag Sample (ppm)	0
Percent Leakage (%)	0
Sample Vacuum ("H ₂ O)	0

20-VP2

Drill Date	15 December 2020
Integrity Test Date	22 January 2021
Surface State	Road box gravel
Probe Length (cm)	15

Install Method	Auger drill
Helium Concentration in Shroud (ppm)	500,000
Helium Concentration in Tedlar Bag Sample (ppm)	0
Percent Leakage (%)	0
Sample Vacuum ("H ₂ O)	5

The soil vapour samples were collected at a flow rate of 100 ml/min for 20 mins. The vapour samples were analyzed for the following parameters:

Table 7-3 Soil-Vapour Parameters

Vapour Sample No.

Parameter Analyzed

20-VP1	VOC/VPH
20-VP2	VOC/VPH

8 INVESTIGATION LOCATIONS & ANALYTICAL RESULTS

The locations of the boreholes, monitoring wells and soil vapour probes at the Site and analytical results are presented on Figures 3 through 5 in Appendix A. Tabulated results of the soil, soil-vapour and groundwater analyses are included in Appendix D. Appendix E contains the completed Chain-of-Custody forms and Laboratory Certificates for the analytical data obtained from ALS.

The following table outlines the soil, soil vapour and groundwater samples collected within identified APEC and AECs. If analyzed parameters were above the applicable standards, the APEC was designated as area of environmental concern (AEC) and PCOCs were confirmed to be contaminants of concern (COCs).

Table 8-1 Summary of Soil, Soil Vapour and Groundwater Samples with associated AECs and COCs

Soil Sample No.	Parameters Analyzed	COCs	AECs
20-MWI@0.3m	metals	pH (8.8)	AEC #1
20-MWI@0.6m	PAH and metals	pH (8.9)	AEC #1
20-MWI@1.2m	F1-F4, VOC, L/HEPH, PAH, phenols and metals	pH (8.5)	AEC #1
20-12@2'	metals	pH (8.05)	AEC #1
20-13@2'	metals	pH (8.35)	AEC #1
20-15@3'	metals	pH (8.05)	AEC #1
20-16@4'	metals	-	-
20-MW2@0.3m	F1-F4, L/HEPH and metals	-	-
20-MW2@0.6m	L/HEPH, PAH, VOC and metals	pH (8.09)	AEC #2
20-MW3@0.3m	F1-F4, VOC, L/HEPH, PAH and metals	-	-
20-MW3@0.6m	metals	-	-
Groundwater Sample No.	Parameters Analyzed	COCs	
20-MWI	LEPHw/HEPHw, PAH, VOC/VPH, phenols and metals	Iron (3,340ug/L) and manganese (1,690 ug/L)	AEC #1
20-MW2	LEPHw/HEPHw, PAH, VOC/VPH and metals	Arsenic (11.2 ug/L), Iron (2,500ug/L) and manganese (877ug/L)	AEC #2
20-MW3	LEPHw/HEPHw, PAH, VOC/VPH and metals	Arsenic (10.1 ug/L), iron (34,900 ug/L and 35,200 ug/L in duplicate sample) and manganese (4,780 ug/L and 4,680 ug/L in duplicate sample)	AEC #3

· · · · · · · · · · · · · · · · · · ·		AECS		
Soil Vapour Sample No.	Parameters Analyzed	COCs	AEC	
20-VP1	VOC/VPH	-	-	
20-VP2	VOC/VPH	-	-	

COCs

AEC-

Bold - analytical parameters that exceeded federal environmental protection standards

Parameters Analyzed

AEC #1

Soil Sample No.

AEC #1 is a section of Timberland Road close to 10619 Timberland Road.

Analytical data for the soil samples revealed that concentrations of LEPH, HEPH, PAH, VOC, F1-F4, phenols and heavy metals were below CCME CEQG, PHC CWS the CSR IL standards in soil samples collected from AEC #1. Soil pH was above the federal environmental quality guidelines (8>pH>6) at five investigative locations (20-MW1, 20-MW2, 20-12, 20-13 and 20-15) collected from fill material between 0.3m and 1.2m bsg.

The concentrations of VOC were below the provincial CSR IL standards in soil vapour at 20-VP1. Detectable concentrations (32ug/L and 34ug/L) of tetrachloroethylene (TCE) were measured in soil vapour sample collected from 20-VP1 and its duplicate.

The groundwater quality was sampled from one monitoring well (20-MW1) within AEC #1. The analytical results revealed that dissolved iron concentration at 20-MW1 (3,340ug/L) was above the federal CCME Water Quality Guideline for the Protection of Aquatic Life in freshwater x 10 (3,000 ug/L) and Federal Interim Groundwater Quality Guidelines (300ug/L). Dissolved manganese at 20-MW1 (1,690ug/L) was found to be above the Federal Interim Groundwater Quality Guidelines (200ug/L) and provincial CSR Drinking Water standard (1,500ug/L). The remaining analytical parameters were below the applicable standards in groundwater sampled at AEC #1.

AEC#2

AEC #2 10440 Timberland Road – due to former operations of CTL Steel and based on previous environmental investigations.

The analytical results for soil samples collected at 20-MW2 during the Phase II ESA field work revealed that pH in soil was above the range recommended by federal environmental quality guidelines (8>pH>6). The remaining sampling parameters (LEPH, HEPH, PAH, VOC, F1-F4 and heavy metals) were below the applicable environmental protection standards.

The concentrations of VOC were below the provincial CSR IL standards in soil vapour at 20-VP2. Detectable concentration (38ug/L) of tetrachloroethylene (TCE) was found in soil vapour sample collected from 20-VP2 and its duplicate.

The groundwater sample collected from 20-MW2 was analyzed for LEPHw/HEPHw, PAH, VOC/VPH and metals. Dissolved iron (2,500ug/L) in 20-MW2 was above the federal CCME Water Quality Guideline for the Protection of Aquatic Life in freshwater x 10 (3,000 ug/L) and Federal Interim Groundwater Quality Guidelines (300ug/L). Dissolved manganese in 20-MW2 (877ug/L) exceeded Federal Interim Groundwater Quality Guideline (200ug/L) and Guideline for Canadian Drinking Water Quality (120ug/L). Dissolved arsenic concentration at 20-MW2 (11.2ug/L) exceeded Federal Interim Groundwater Quality Guidelines (5ug/L) and provincial CSR Drinking Water standard of 10ug/L.

AEC#3

AEC #3 - 10520 Timberland Road – due to historical and current activities (Chemetron Railway Products and CP Yard) and previous environmental investigation (Stage 2 PSI, SNC Lavalin Environment, 2013).

All analytical results for soil collected at 20-MW3 (F1-F4, VOC, L/HEPH, PAH and metals) were below the applicable federal standards and below provincial soil standards for industrial land use.

The analytical results for groundwater sample and its duplicate (20-DUP1) indicated exceedances of federal and provincial groundwater standards for dissolved arsenic. The analytical results revealed that dissolved iron concentrations at 20-MW3(34,900ug/L) were above federal CCME Water Quality Guideline for the Protection of Aquatic Life in freshwater x 10 (3,000 ug/L) and Federal Interim Groundwater Quality Guidelines (300ug/L). Dissolved manganese at 20-MW3 (4,780ug/L) was found to be above Federal Interim Groundwater Quality Guidelines (200ug/L), Guidelines for Canadian Drinking Water Quality (120ug/L) and provincial CSR Drinking Water standard (1,500ug/L).

8.1 FIELD QA/QC

Samples were submitted to ALS within 24 hours of sampling. Analyses were completed within the required sample hold times.

The field QA/QC program specified the collection of one duplicate sample for every ten samples collected. During the Phase II ESA, eleven soil samples, three groundwater samples, and two soil vapour samples were submitted for analyses. One soil, one groundwater, and one soil vapour duplicate sample were analyzed alongside the parent samples. The duplicate soil samples were analyzed for PAH, VOC, VPH and metals, the duplicate groundwater sample was analyzed for LEPH/HEPH, PAH, VH, VPH, and dissolved metals.

According to the 2013 edition of the BC Field Sampling Manual, "If one or a set of duplicate values at or greater than five times the Method Detection Limit (MDL), then Relative Percent Difference (RPD) values >20% indicate a possible problem, and >50% indicates a definite problem, most likely either contamination or lack of sample representativeness." Therefore, the threshold RPD was set at 20% and those samples and duplicates that had concentrations less than five times the laboratory detection limit (MDL) were not calculated.

Relative percent difference (RPD) values for parent and duplicate sample results were calculated and included in the analytical tables in Appendix D. RPD values for all samples were either below 20% or could not be calculated because the parameter concentration in the parent sample and/or its duplicate sample was less than five times the method detection limit or the parameter concentrations were below the laboratory method detection limits.

8.2 LABORATORY QA/QC

WSP also reviewed the laboratory QA/QC data provided by ALS in the laboratory certificates. The laboratory certificates included results for laboratory blanks, replicates and reference samples. They also included results of the laboratory's calibration check.

The laboratory runs blanks to determine if their analytical instruments are clean and do not positively bias sample results. Reference samples are analyzed to determine if recoveries are within the range allowed by the BC ENV. Replicates are analyzed to prove that the analytical results for the duplicate sample are within the allowable range of laboratory acceptance, in accordance with the BC ENV laboratory manual and procedures.

WSP identified three issues pertaining to the laboratory QA/QC provided in the laboratory certificates for the soil and groundwater samples analyzed during this investigation. The following issue was identified a total of three times in ALS Work Orders #: VA20C3698 and VA20C3415:

 Lab control sample recovery was slightly outside ALS Data Quality Objective (DQO). Reported nondetect results for associated samples were unaffected.

The ALS QA/QC analytical results met all the internal data quality objectives, therefore the ALS results are considered acceptable. The results of ALS's QA/QC samples are included in each of the laboratory certificates attached in Appendix E.

9 DISCUSSION AND CONCLUSIONS

Phase II ESA was conducted in December 2020 – January 2021 during which a total of five boreholes were drilled and completed as monitoring wells. Two soil vapour probes were also installed. The boreholes were drilled within the proposed transportation improvement project and within the areas of potential environmental concern and areas of environmental concern identified in the Phase I ESA. Fill soils were encountered at all investigative locations. Samples were analyzed for a range of PCOCs/COCs. Based on the comparison of the analytical results for Phase II ESA with the federal environmental protection standards, three AECs were identified at the Site:

Table 9-1 Summary of Identified AEC and COCs

AEC NO.	AEC DESCRIPTION	REGULATED COCS*	COCS IDENTIFIED DURING PREVIOUS ENVIRONMENTAL INVESTIGATIONS BY OTHER CONSULTANTS
AEC#1	A section of Timberland Road close to 10619 Timberland Road (based on historical and current activities and previous environmental investigations and BC Site Registry (Site IDs 16719 - Across from 10619 Timberland Road and 23211 - Surrounds Timberland Road).	Soil: pH Groundwater: dissolved iron and manganese	Groundwater: arsenic and sodium (based on a Notification of Likely or Actual Contaminant Migration issued after ESA conducted for 10619 Timberland Road)
AEC #2	10440 Timberland Road - due to former operations of CTL Steel and based on previous environmental investigations.	Soil: pH Groundwater: dissolved arsenic, iron and manganese	Soil: chromium, copper and nickel), F2 (C10-C16)/LEPH and F3 (C16-C34) Groundwater: dissolved iron (based on Phase II ESA, SLR Global Environmental Solutions, 2012)
AEC #3	10520 Timberland Road - due to historical and current activities (Chemetron Railway Products and CP Yard) and previous environmental investigation (Stage 2 PSI, SNC Lavalin Environment, 2013)	Groundwater: dissolved arsenic, iron and manganese	Soil: pH, arsenic, chromium, copper and phenanthrene (PAH) Groundwater: arsenic, cadmium, iron and manganese (based on Stage 2 PSI, SNC Lavalin, 2013 and Phase I and II ESA, Hemmera Envirochem Inc., 2018.

Notes:

^{*} regulated within federal jurisdictions.

WSP reviewed the analytical database for background groundwater quality for the Site area and surrounding properties (Subregion 1 – Lower Mainland, BC) compiled by the Ministry of Environment and Climate Change Strategy (ENV). The regional background concentration of substances in groundwater were collected by the ministry from various sources including academic studies and technical reports. Based on the regional background concentration map⁶, dissolved iron within Subregion 1 is 290,000ug/L, manganese – 26,000ug/L and arsenic – 38ug/L. The nearest groundwater monitoring site location is approximately 400m to the east-northeast, at 10619, 10627, 10633, 10641 Fir Road and adjacent lane (Site ID 17709). Based on the site-specific background groundwater concentrations, dissolved arsenic was between 5.7ug/L to 41.7ug/L, dissolved iron was 14,300ug/L to 114,000ug/L and dissolved manganese was 2,800ug/L to 3,410ug/L in samples collected on seasonal basis. Therefore, it appears that elevated concentrations of arsenic, iron and manganese in groundwater at the Site are within the regional background concentrations of dissolved metals suggested by ENV.

Based on the Federal Interim Groundwater Quality Guidelines (Section 4.3 Special Considerations on the Application of the Numerical Guidelines), it is not expected that remediation of a contaminated site would be done to the levels below natural background concentrations. The guidelines may be considered in the development of risk management approach to ensure that elevated concentrations of chemicals do not pose an unacceptable risk to human health.

No information was available for WSP to review with regards to the source of the fill material at the Site. It appears that elevated pH levels were observed at several sections of the proposed transportation project. pH of the soil influences biogeochemical processes that affect plant growth and biomass yield. Therefore, the fill material excavated during construction activities should not be used for ditch infilling or deposition within environmentally sensitive areas.

6 iMapBC - https://maps.gov.bc.ca/ess/hm/imap4m/

Phase II Environmental Site Assessment Fraser Surrey Port Lands

Project No. 20M-00758-00 VFPA

10 RECOMMENDATIONS

WSP recommends the following:

- Due to elevated concentrations of heavy metals and high pH, the soil excavated from the areas located within AEC #1 through AEC #3 during construction activities at the Site should be characterized and disposed accordingly, possibly to a licenced landfill.
- If groundwater is encountered during construction activities, it should be collected and disposed offsite
 as contaminated water or treated at the site. The effluent quality should comply with the requirements
 of federal and provincial regulations⁷.
- Erosion and sediment control (ESC) plan should be prepared by a Qualified Professional (QP) to address
 the storm water management during construction. The quality of discharge should comply with the ESC
 plan and the City of Surrey ESC Bylaw No. 16138.
- If a Ministry Instrument is requested for the Site at a later date, further work would likely be required such as on- and off-site delineation of identified COCs in soil and/or groundwater.
- As per the BC Groundwater Protection Regulation (effective November 2005), any well (including
 monitoring wells) not used for more than 5 years should be deactivated or decommissioned since such
 water wells pose a preferential pathway to the underlying aquifer. Water wells have to be
 decommissioned by a qualified well driller or under the supervision of a qualified professional. A copy of
 the well decommissioning report should to be submitted to the BC ENV.
- During potential future redevelopment of the Site, if any hidden source(s) of contamination or any suspected/odorous soils are discovered, a qualified environmental professional should be contacted prior to the source removal to initiate soil characterization.

Phase II Environmental Site Assessment Fraser Surrey Port Lands Project No. 20M-00758-00

VFDA

Fisheries Act, CCME Water Quality Guidelines for the Protection of Aquatic Life, BC Hazardous Waste Regulations, Schedule 1.2 (Standards for Discharges to the Environment and Storm Sewers), BC Approved Water Quality Guidelines

11 PROFESSIONAL STATEMENT

As required under Part 4, Section 62 of the "Environmental Management Act", Contaminated Sites Regulations (CSR, BC Reg. 375/96 including amendments up to Stage 13, January 26, 2021), WSP confirms that:

- The Site investigation report has been prepared in accordance with the requirements of the Act and its regulations, policies, procedures and protocols; and
- The person(s) signing this report has (have) demonstrable experience in conducting investigations of this type and are familiar with the investigation completed at the Site.

11.1 ROLES AND RESPONSIBILITIES

Mr. Rory Chudley, B.Tech., Environmental Technician Field Staff, Report Author

Mr. Rory Chudley is an environmental technician with experience in conducting Stage 1 and 2 Preliminary Site Investigations, Spill Remediation, and soil, groundwater, soil vapour, and surface water monitoring and sampling since 2017. He has experience conducting environmental investigations on municipal, industrial, commercial, and residential properties, including a sewage treatment plant, school, and hospitals. He has also been involved in in-situ and ex-situ remediation of contaminated sites and remediation following truck spills. Rory holds a Bachelor's Degree of Technology in Environmental Engineering Technology from British Columbia Institute of Technology as well as a Diploma of Technology in Architectural and Building Engineering Technology from British Columbia Institute of Technology.

Ms. Marina Makovetski, P. Ag., Environmental Scientist Project Manager, Report Author

Ms. Marina Makovetski is an Environmental Scientist with more than eight years of experience in environmental engineering projects in British Columbia. Ms. Makovetski has conducted various Phase II and Phase III, Detailed Site Investigations, and Remediation projects in British Columbia. She has been leading field work and report preparation for this Phase II ESA.

Ms. Jas Minhas Report review

Ms. Jas Minhas is an Environmental Toxicologist. She has over nine years of experience in contaminated site assessment including over 300 Stage 1 Preliminary Site Investigations (PSI), several Stage 2 PSIs, Detailed Site Investigations (DSIs), underground storage tank removals, due diligence reviews, and human health and ecological risk assessments.

12 CLOSURE

WSP has prepared this report exclusively for VFPA. The conclusions made in this report reflect WSP's best judgement in light of the information available at the time of preparation. No other warranty, expressed or implied, is made. Any use which a third party makes of this report, or any reliance on or decisions to be made or actions based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report. The standard limitations of this report are provided in Section 13. Your attention is also drawn to the conditions outlined in the "Terms of Engagement" which will be applicable to this report.

13 STANDARD LIMITATIONS

- 1 The findings and conclusions documented in this Report have been prepared for specific application to this Project and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the area.
- 2 The findings of this Report are based solely on data collected on Site during this investigation and pertain only to the locations that have been investigated and on the conditions of the Site during the completion of the work and services. WSP Canada Inc. has relied on good faith on information provided by individuals and sources noted in the Report. No other warranty, expressed or implied, is made.
- 3 If new information is developed in future work that affects the conclusions of this Report, WSP Canada Inc. should be contacted to re-evaluate the conclusions of this Report and provide amendments as required.
- 4 The service provided by WSP Canada Inc. in completing this Report is intended to assist the Client in a business decision. The liability of the Site is not transferred to WSP Canada Inc. as a result of such work and services, and WSP Canada Inc. does not make recommendation regarding the purchase, sale, or investment in the property.
- 5 This document is intended for the exclusive use of VFPA, for whom it has been prepared. WSP does not accept responsibility to any third party for the use of information presented in this Report, or decisions made or actions taken based on its content.
- The information presented in this Report is based on, and limited by, the circumstances and conditions acknowledged herein, and on information available at the time of its preparation. WSP has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this Report, but cannot guarantee or warrant the accuracy or completeness of the information. Information provided by others, whether represented or otherwise utilized, is believed to be accurate but cannot be guaranteed.
- 7 The report intended to be used in their entirety. No excerpts may be taken to be representative of the findings in the assessment / investigation.
- 8 The Report may not be reproduced in whole or in part, except as required by your accountants, regulators or legal advisors, without our prior written consent. In any event, the Report shall be provided in its entirety.
- 9 This report is not assignable and does not confer any right or benefit upon any third party unless written agreement is made between WSP and the third party. We accept no responsibility for any loss or damage suffered by a third party as a result of decisions made or actions based on the Report. In the event that a third party has a concern about the Property and seeks a report upon which it may rely, it is obligated to hire an environmental consultant at its own cost.

APPENDIX

A FIGURES

Site Location Map

Phase II Environmental Site Assessment

Fraser Surrey Port Lands - Transportation Improvements

Vancouver Fraser Port Authority

DES.	JL/RC
CH.	AS SHOWN
APP.	MAR 2021
FILE NO. 201	1-00758-00
DMG. NO. FIG	URE 1

SOIL SAMPLE CONCENTRATIONS
 MEET APPLICABLE STANDARDS
 SOIL SAMPLE CONCENTRATIONS
 EXCEED APPLICABLE STANDARDS

 SOIL SAMPLE CONCENTRATION BELOW APPLICABLE STANDARDS

ND — SOIL SAMPLE CONCENTRATION BELOW LABORATORY DETECTION I IMIT

Site Plan Showing Soil Analytical Results

Phase II Environmental Site Assessment

Fraser Surrey Port Lands - Transportation Improvements

Vancouver Fraser Port Authority

DES.	DR. JL/RC
CH.	AS SHOWN
APP.	MAR 2021
FILE NO. 20M-00	0758-00
DWG. NO. FIGU	RE 3

WATER SAMPLE CONCENTRATION BELOW APPLICABLE STANDARDS

WATER SAMPLE CONCENTRATION BELOW LABORATORY DETECTION

TITLE PROJECT: WSP CANADA INC. #100 - 20339 96 AVENUE, LANGLEY, BC VIM 064 HONE: 604 633-2992 - FAX: 604 633-0768 - WWW.WSP.COM CLIENT:

Site Plan Showing Groundwater Analytical Results

Phase II Environmental Site Assessment Fraser Surrey Port Lands - Transportation Improvements Vancouver Fraser Port Authority

DES.	DR. JL/RC
CH.	AS SHOWN
APP.	MAR 2021
FILE NO. 20M-00	0758-00
DWG. NO. FIGU	IRE 4

LEGEND

- — MONITORING WELL LOCATION
- SOIL VAPOUR PROBE LOCATION

98.228 - GROUNDWATER ELEVATION

GROUNDWATER FLOW DIRECTION

<u>NOTES</u>

- GROUNDWATER DEPTHS MEASURED DECEMBER 17, 2020.
- ELEVATIONS BASED ON ARBITRARY DATUM OF 100m AT TOP OF NUT OF FIRE HYDRANT LOCATED NEAR WEST CORNER OF 10610 TIMBERLAND ROAD.

Site Plan Showing Groundwater Elevation Phase II Environmental Site Assessment Fraser Surrey Port Lands - Transportation Improvements Vancouver Fraser Port Authority

DES.	Di	R. JL/RC
CH.	sx	AS SHOWN
APP.	D	MAR 2021
FILE NO.	20M-007	58-00
DWG. NO.	FIGURE	6

APPENDIX

BPHOTOGRAPHS

Photograph 1: View of Timberland Road looking north.

Photograph 2: 10440 Timberland Road – proposed development area (used by Westran Intermodal Ltd.).

Photograph 3: 10550 Timberland Road – proposed development area (occupied by IDC Distribution Services Ltd.).

Photograph 4: 10520 Timberland Road – proposed development area (occupied by CP Welding Plant).

Photograph 5: 10550 Timberland Road - occupied by IDC Distribution Services Ltd.

Photograph 6: Storage of railway ties at 10520 Timberland Road.

APPENDIX

BOREHOLE AND MONITORING WELL LOGS

MONITORING WELL RECORD: 20-MW1

Project Number: 20M-00758-00

Project Name: Site: Borehole Location: Client:

VFPA FSPL Transportation Improvement Fraser Surrey Port 20-MW1

Vancouver Fraser Port Authority

Drilling Details: Date (start): 15/12/2020
Date (end): 15/12/2020
Drilling Company: Downrite Drilling
Drilling Equipment: Other

Survey Details:

Sample Type: AS - Auger sample GS - Grab sample MA - Manual Auger SS - Split Spoon Sample State:

Chemical Analysis: Metals = AT1 Metals Metals, VOC/VPH, F1-F4, LEPH/HEPH, PAH, CI. & non CI. Phenois =

S - Slight M - Moderate P - Persistent

Odour:

ı	Visual:
ı	Visual: D - Dispersed S - Saturated
ı	S - Saturated
1	

Drilling Equipmen Drilling Method: Borehole Diamete Drilling Fluid:	Solid St	em / Hallow Stem Aug	er Well Details: Well Casing Type: Flushmount	\sim	Intact / Undisturbed Reworked / Remoulded Lost Cored	ST - S TA - A TR - 1	Split Sp Shelby Auger Trowel DT32 L	Tube		Phenois	-				ual: Disper Satura	
]		GEC	LOGY / LITHOLOGY		LETION DETAILS				s	AMPLES				OBS	ERVA	MIO
mbgs DEPTH ELEVATION masl	ПТНОГО СУ	Ground surface.	DESCRIPTION	DIAG.	DESCRIPTION	% RECOVERY	NValue	SAMPLE STATE	SAMPLE NAME	DEPTH(m)	PID (ppm)	ANALYSIS	DUPLICATE	S M E	WSUAL	2
0.10		ASPHALT.		- S	0.00 Concrete											t
0.5 - 0.60	, O (AVEL: road base, grey.		Bentonite				20- MW1@0.3m	0.25-0.35	0	Metals				
1.0		SAND: fine, b gravel.	prown, trace well-rounded		0.91				20- MW1@0.6m	0.60-0.70	0	Metals				
.5 —					WATER (17/12/2020) Depth: 1.40 m				20- MW1@1.2m	1.15-1.25	0.2	Metals, VOC/VPH, F1-F4, LEPH/HEPH, PAH, CI. & non Cl. Phenols				
2.0		−Grey below 1	.8m		Blav.: m Diam.: 51 mm Sand PVC (#10),			777	20-	1.95-2.05	0					
									MW1@2m							
2.5 -		-Wood debris	encountered at 2.7m		1				20- MW1@2.7m	2.65-2.75	0.1					
3.0-																
3.5 —					Slough											
4.0-																
4.5									20- MW1@4.4m	4.35-4.45	0.1					
5.0—		End of boreh	ole at 4.60 m.													
ogged by: F																

MONITORING WELL RECORD: 20-MW2

Project Number: 20M-00758-00

Project Name: Site: Borehole Location: Client:

VFPA FSPL Transportation Improvement Fraser Surrey Port 20-MW2

Vancouver Fraser Port Authority

Drilling Details: Date (start): 15/12/2020
Date (end): 15/12/2020
Drilling Company: Owen'tb Drilling Equipment: Other
Drilling Method: Solid Stem / Holk

Survey Details:

▼ Water Level AS - Auger sample Sample State: MA - Manual Auger SS - Spit Spoon ST - Shelby Tube

Sample Type:

Chemical Analysis: Metals = AT1 Metals Metals, VOC/VPH, F1-F4, LEPH/HEPH, PAH =

Odour: S - Slight M - Moderate P - Persistent Visual:

rilling Method: Solid 5 prehole Diameter: 152 m rilling Fluid:	Well Casing Type: Flushmount		Reworked / Remoulded Lost Cored LETION DETAILS	ST - S TA - A TR - 1 TU - D	Auger Trowel DT32 L			AMPLES				D-D S-S	aturat	ited
mbgs 5 DEPTH 9 ELEVATION 00 massl	GEOLOGY / LITHOLOGY DESCRIPTION Ground surface.	DIAG.	DESCRIPTION	% RECOVERY	NValue	SAMPLE STATE	SAMPLE NAME	DEPTH(m)	PID (ppm)	ANALYSIS	DUPLICATE	SMP	VISUAL	DEPTH ///
0.70	Silty SAND: grey/brown, some gravel -Metal debris encountered at 0.6m SAND: Fine, grey End of borehole at 4.60 m.		Slough				20- MW2@0.3m 20- MW2@0.6m 20- MW2@1.2m	0.55-0.65 1.15-1.25 3.15-3.25	0.1	Metals. VOC/VPH, F1-F4, LEPH/HEPH, PAH Metals	20- DUP1- MM			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MONITORING WELL RECORD: 20-MW3

Project Number: 20M-00758-00

Project Name: Site: Borehole Location: Client:

Sample Type:

VFPA FSPL Transportation Improvement Fraser Surrey Port 20-MW3 Vancouver Fraser Port Authority

Drilling Details: Date (start): 15/12/2020
Date (end): 15/12/2020
Drilling Company: Downrite Drilling
Drilling Equipment: Other

Survey Details:

Sample State:

AS - Auger sample GS - Grab sample MA - Manual Auger SS - Split Spoon

Chemical Analysis: Metals = AT1 Metals Metals, VOC/VPH, F1-F4, LEPH/HEPH, PAH =

Odour: S - Slight M - Moderate P - Persistent Vieuel

Drilling Equipme Drilling Method: Borehole Diame Drilling Fluid:	Solid St	em / Hallow Stem Aug	er Well Details: Well Casing Type: Flushmount	\sim	Intact / Undisturbed Reworked / Remoulded Lost Cored	ST - S TA - / TR - 1	Split S Shelby Auger Trowel DT32 L	Tube								sed ted
		GEO	DLOGY / LITHOLOGY		PLETION DETAILS				S	AMPLES				OBS	ERVA	ATIONS
mbgs <u>DEPTH</u> ELEVATION masi	ГТНОГОВУ	Ground surface.	DESCRIPTION	DIAG.	DESCRIPTION	% RECOVERY	NValue	SAMPLE STATE	SAMPLE NAME	DEPTH(m)	PID (ppm)	ANALYSIS	DUPLICATE	S S S S S S S S S S S S S S S S S S S	© VISUAL	DEPTH (ft)
		SAND & GR/ SAND: Fine, debris	AVEL: Grey grey, trace gravel, trace wood		Bentonite PVC, 51 mm 0.53 WATER (17/12/200) Deptr 0.69 m Elev: m Diam:: 51 mm PVC (#10),	% REC	AN .	SAMPLE SAMPLE	20- MW3@0.3m 20- MW3@0.6m 20- MW3@1.2m	0.25-0.35 0.55-0.65 1.15-1.25	0.1	Metals, VOCVPH, F1-F4, LEPH/HEPH, PAH Metals	riana	90 MI		
Logged by:	Dam.													Ш	Ш	Ш

Project: 20M-00758-00 LOGS.GPJ Type of report: WSP_EN_WELL-ENVIRONMENTAL Data Template: 20190804_CD_GDT_21/1/2/2020

APPENDIX

ANALYTICAL DATA TABLES

Phase II Environmental Site Assessment Fraser Surrey Port Lands, Surrey, BC

Table 1
Results of Soil Samples
Metals Analyses
page 1 of 1

PARAMETERS	RDL			20-MW1@1.2m				RPD (%)	20- MW3@ 0.3m		20-10@2'	20-12@2'	20-13@2'	20-15@3'	20-16@4'	CSR IL Standards (1)	CCME CSQG, Industrial Land Use (7)
Sample Date			15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020		15-Dec-2020	15-Dec-2020	15-Oct-2020	15-Oct-2020		15-Oct-2020	15-Oct-2020	1.05	
pH	0.1	8.8	8.9	8.5	7.84	8.09	8.08	-	7.41	7.52	6.9	8.05	8.35	8.05	7.3	NS	6 to 8
Aluminum	40	9840	9600	9230	14800	10800	10300	5%	15600	19900	16000	8980	10000	10400	13600	250 000 (2)	NA
Antimony	0.1	0.22	0.2	0.18	0.51	0.33	0.34	-	0.45	0.57	0.64	0.32	0.28	0.28	0.36	40 000 (2), 40 (3)	40
Arsenic	0.3	3.13	3.26	2.79	5.64	4.02	4.02	-	5.44	7.8	7.83	3.98	4.04	3.7	3.77	10	12
Barium	1	50.9	52.8	48.7	97.8	86.5	76.8	12%	111	145	134	64.8	80.8	64.8	78.5	350	2000
Beryllium	0.1	0.19	0.18	0.16	0.32	0.23	0.22	-	0.31	0.4	0.35	0.2	0.2	0.18	0.25	1 - 350	8
Boron	2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	> 1 000 000 (2)	NA
Cadmium	0.04	0.12	0.124	0.126	0.322	0.155	0.17	-	0.21	0.311	0.349	0.201	0.143	0.133	0.142	1 - 50	22
Chromium hexavalent (Cr VI)	0.1	0.1	0.12	<0.10	< 0.10	<0.10	0.11		<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	60	1.4
Chromium trivalent (Cr III)	0.03	30.7	23.1	22.8	37.3	33.1	28.1	16%	38.7	46.7	60.4	25	30.6	27.1	25.6	250	87*
Cobalt	0.1	8.11	8.06	7.12	12.1	9.35	8.97	4%	12.4	15.7	14.8	7.69	8.68	7.05	7.59	25	300
Copper	0.4	15.8	14.9	13.7	31.2	19.3	18.9	2%	28.5	37.8	37	16.5	18.1	15	17.6	75 - 300	91
Iron	20	18200	17500	16100	25800	20200	19300	5%	27000	32400	30400	18000	19600	19000	18500	150 000 (2)	NA
Lead	0.2	2.65	2.14	2.06	19	4.26	4.74	11%	5.51	9.07	7.88	4.3	3.08	7.64	9.03	200 (6) - 4 000	600
Lithium	0.1	8	7.3	7.1	13.1	9.4	9.3	1%	14	18.6	13.2	7.1	8.2	6.9	6.5	450 (2)	NA
Manganese**	0.4	398	348	299	607	365	370	1%	547	672	578	423	340	373	380	2 000	NA
Mercury	0.04	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	-	0.0528	< 0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500	< 0.0500	75	50
Molybdenum	0.1	0.33	0.34	0.3	0.71	0.43	0.47	-	0.7	0.94	1.06	0.49	0.59	0.64	0.97	15	40
Nickel	0.6	32.8	34.2	30.6	42.9	37.1	34.5	7%	43.7	51.9	55.4	32.1	35.4	26.5	24.3	75-250 (6)	89
Selenium	0.2	<0.20	< 0.20	<0.20	0.36	<0.20	< 0.20	-	0.29	0.44	0.43	<0.20	<0.20	<0.20	<0.20	1	2.9
Silver	0.1	< 0.10	< 0.10	<0.10	0.14	<0.10	<0.10	· ·	<0.10	0.13	0.13	<0.10	< 0.10	<0.10	<0.10	35 000 (2), 40 (3)	40
Strontium	0.2	21.3	20.5	20.8	41.3	36.3	34.2	6%	53.9	59.5	51.3	29.3	35	34.5	45.3	150 000 (2)	NA
Thallium	0.1	< 0.050	< 0.050	< 0.050	0.093	0.052	0.053	2%	0.08	0.109	0.094	< 0.050	0.052	< 0.050	< 0.050	25 (3)	1
Tin	0.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	- 1 000 000 (2), 300 (3	300
Tungsten	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	200 (2)	NA
Uranium	0.05	0.296	0,221	0,261	0.657	0.339	0.395	15%	0,701	0.866	0.703	0.398	0.37	0.328	0,448	30	300
Vanadium	1	45,1	41.4	39.6	52	44.9	42.8	5%	50,4	63.2	62	41.7	42	41.4	37	100	130
Zinc	2	40.8	38	35.2	64.8	46.2	45.1	2%	62.2	79.9	72.4	39.6	43.3	43	45,4	150 - 450	410

NOTES

Results and standards in μg/g or parts per million (ppm) unless otherwise stated

RDL - Reported Detection Limit

- - Not analyzed / cannot be calculated

*Standard for total chromium

** - Manganese standards apply if site used for an industrial or commercial purpose or activity set out in Schedule 2 as: B1, C1, C3, C4, D2, D3, D5, D6, E4, H3, H11, H14, or H20. NS indicates that no standard applies

- 1 CSR Schedule 3.1, Part 1 Matrix Numerical Soil Standards unless noted otherwise
- 2 CSR Schedule 3.1 Part 2 Generic Soil Standards to Protect Human Health
- 3 CSR Schedule 3.1 Part 3 Generic Soil Standards to Protect Ecological Health
- 4 Standard for hexavalent chromium
- 5 Standard for all chromium speciations
- 6 Protocol 4 Determining Background Soil Quality (Surrey Regional Background Concentration for Lower Mainland)
- 7 Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Environment and Human Health, 1999 Industrial Land Use

RPD - Relative Percentage Difference

BOLD D

Sample concentration exceeds the applicable standard or criteria

OLD RPD values exceed 20%

Phase II Environmental Site Assessment Fraser Surrey Port Lands, Surrey, BC

Table 2 Results of Soil Samples PAH Analyses Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1@1.2m	20-MW1@0.6m	20-MW2@0.6m	20-DUP1-MM	RPD (%)	20-MW3@0.3m	CSR IL Standards (1)	Canadian Soil Quality Guidelines (CSQG) for the protection of Environmental Health (4)	Soil Quality Guideline for the Protection of Freshwater Life (5)	Soil Quality Quidelines for the protection of potable water (6)
1-Methylnaphthalene	0.01	< 0.010	< 0.010	-	< 0.010	·	< 0.010	1000 (2)	NG	NG	NG
2-Methylnaphthalene	0.01	< 0.010	< 0.010	-	< 0.010		< 0.010	950 (2)	NG	NG	NG
Acenaphthene	0.005	< 0.0050	< 0.0050	<0.0050	< 0.0050		< 0.0050	15 000 (2)	NG	0.28	NG
Acenaphthylene	0.005	0.0187	0.013	0.0087	0.0118	-	< 0.0050	NS	NG	320	NG
Anthracene	0.004	< 0.0040	0.0101	0.0182	0.0087		< 0.0040	30	32	NG	NG
Benz (a) anthracene	0.01	< 0.010	0.016	0.027	0.012	-	< 0.010	500 (2), 10 (3)	10	NG	0.33
Benzo (a) pyrene	0.01	< 0.010	0.013	0.022	0.012	-	< 0.010	50	72	8800	0.37
Benzo (b+j) fluoranthenes	0.01	< 0.010	0.017	0.029	0.015	· ·	< 0.010	500 (2), 10 (3)	10	NG	0.16
Benzo(g,h,i)perylene	0.01	< 0.010	< 0.010	0.014	< 0.010	-	< 0.010	NS	NG	NG	6.8
Benzo (k) fluoranthene	0.01	< 0.010	< 0.010	< 0.010	< 0.010	-	< 0.010	500 (2), 10 (3)	10	NG	0.16
Chrysene	0.01	< 0.010	0.015	0.024	0.012	-	< 0.010	4 500 (2)	NG	NG	21
Dibenz (a,h) anthracene	0.005	<0.0050	< 0.0050	<0.0050	< 0.0050	-	< 0.0050	50 (2), 10 (3)	10	NG	0.23
Fluoranthene	0.01	< 0.010	0.039	0.063	0.028	-	0.014	200	180	NG	NG
Fluorene	0.01	< 0.010	< 0.010	< 0.010	< 0.010	-	< 0.010	9 500 (2)	NG	0.25	NG
Indeno (1,2,3-cd) pyrene	0.01	< 0.010	<0.010	0.013	< 0.010	-	< 0.010	500 (2), 10 (3)	10	NG	27
Naphthalene	0.01	< 0.010	<0.010	< 0.010	<0.010	-	< 0.010	20	0.013	0.013	NG
Phenanthrene	0.01	< 0.010	0.023	0.050	0.016	-	0.014	300 000 (2), 50 (3)	0.046	0.046	NG
Pyrene	0.01	< 0.010	0.024	0.046	0.019	-	< 0.010	200 000 (2), 100 (3)	100	NG	NG
Quinoline	0.01	< 0.010	<0.010	< 0.010	< 0.010	-	< 0.010	10 (2)	NG	NG	NG
Total for B(a)P TPE*		-	0.01645	0.02798	0.01482	-	-	NS	NG	NG	NG
IACR (CCME)**	0.15	<0.15	0.24	0.383	0.21	-	<0.15	NS	NG	NG	<-1

NOTES

Results and standards in µg/g or parts per million (ppm) unless otherwise stated

"-" - Not analyzed / cannot be calculated

NS indicates that no standard applies

NG indicates that no guidance applies

RPD Relative percent difference

Bold

IACR - Index of Additive Cancer Risks

- 1 CSR Schedule 3.1, Part 1 Matrix Numerical Soil Standards unless noted otherwise
- 2 CSR Schedule 3.1 Part 2 Generic Soil Standards to Protect Human Health
- 3 CSR Schedule 3.1 Part 3 Generic Soil Standards to Protect Ecological Health
- 4 Canadian Soil Quality Guidelines (CSQG) for Carcinogenic and Other PAHs for the protection of Environmental Health.
- 5- Soil Quality Guideline for the Protection of Freshwater Life
- 6- Soil Quality Guidelines for the protection of potable water

"The unsubstituted PAHs that are known or strongly suspected to act as carcinogens in humans and other mammals" as per Canadian Environmental Quality Guidelines,

Canadian Council of Ministers of the Environment, 2008, revised 2010.

Benzo(a)pyrene Total Potency Equivalents (B(a)P TPE) was calculated using these parameters to assess carcenogenic effects of PAHs for the protection of Human

BOLD Sample concentration exceeds the applicable standard or criteria. BOLD Sample concentration detectable BOLD RPD values exceed 20%

^{*}The calculated value of B(a)P TPE was compared with the human health guidelines based on carcinigenic effects of PAHs for industrial land (0.6 B(a)P TPE - based on an incremental lifetime cancer risk of 1 in 1,000,000 and 5.3 B(a)P TPE based on an incremental lifetime cancer risk of 1 in 100,000)

^{**}The IACR calculated value was compared with human health guideline based on carciogenic effects of PAHs for the protection of potable water at industrial sites (IACR<-1)

Table 3 Results of Soil Samples Petroleum Hydrocarbons (PHC)

Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1@1.2m 15-Dec-2020	20-MW2@0.3m 15-Dec-2020	20-MW2@0.6m 15-Dec-2020	20-DUP1-MM 15-Dec-2020	RPD (%)	20-MW3@0.3m 15-Dec-2020	CSR IL Standards (1)	CWS, Industrial Use (<u>Coarse</u> Soil) (4)
EPHs (10-19)	50	<200	<200	<200	<200	-	<200	~ 2 000	NS
EPHs (19-32)	50	<200	<200	<200	<200	-	<200	~ 5 000	NS
LEPH	50	<200	<200	<200	<200	-	<200	2 000 (2, 3)	NS
HEPH	50	<200	<200	<200	<200	-	<200	5 000 (2,3)	NS
F1 (C6-C10)	5	<5.0	-	-	<5.0	-	<5.0	NS	240*
F2 (C10-C16)	25	<25	<25	-	<25	-	<25	NS	260
F3 (C16-C34)	50	<50	<50	-	54	-	66	NS	1700
F4 (C34-C50)	50	<50	<50	-	50	-	<50	NS	3300
TPH (C10-C50)	75	<75	<75	-	104	-	<75	NS	NS
TPH (C16-C50)	75	<75	<75	-	104	-	<75	NS	NS

NOTES

Results and standards in µg/g or parts per million (ppm) unless otherwise stated

- "~" Compared to LEPH/HEPH standards
- "-" Not analyzed / cannot be calculated

NS indicates that no standard applies

RPD Relative percent difference

- 1 CSR Schedule 3.1, Part 1 Matrix Numerical Soil Standards unless noted otherwise
- 2 CSR Schedule 3.1 Part 2 Generic Soil Standards to Protect Human Health
- 3 CSR Schedule 3.1 Part 3 Generic Soil Standards to Protect Ecological Health
- 4-Canada-Wide Standards for Petroleum Hydrocarbons in Soil, 2008 (Industrial Land Use, Coarse Soil)
- *where applicable, for protection of potable groundwater

Coarse Soil means soil having a median grain size of >75um as defined by the American Society for Testing and Materials

BOLD Sample concentration exceeds the applicable standard or criteria

Sample concentration detectable

BOLD RPD values exceed 20%

Table 4
Results of Soil Samples
VOCs / VPH Analyses
Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1@1.2m	20-MW2@0.6m	20-DUP1-MM 15-Dec-2020	RPD	20-MW3@0.3m	CSR IL Standards (1)	CCME CSQG Industrial Land (4)
1,1,1,2-Tetrachloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	1 500 (2)	NG
1.1.1-Trichloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	> 1 000mg/g (2), 50 (3)	50
1,1,2,2-Tetrachloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	150 (2)	50
1,1,2-Trichloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	30 000 (2), 50 (3)	50
1,1-Dichloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	> 1 000mg/g (2), 50 (3)	50
1,1-Dichloroethene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	350 000 (2), 50 (3)	50
1,2-Dichlorobenzene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	650 000 (2), 10 (3)	10
1,2-Dichloroethane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	350 (2), 50 (3)	50
1,2-Dichloropropane	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	10 000 (2), 50 (3)	50
1,3-Dichlorobenzene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	200 000 (2), 10 (3)	10
1,3-Dichloropropene (cis + trans)	0.075	< 0.075	< 0.075	< 0.075	-	< 0.075	200 000 (2), 50 (3)	50
1,4-Dichlorobenzene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	800 000 (2), 10 (3)	10
Benzene	0.02	< 0.0050	< 0.0050	<0.0050	-	< 0.0050	0.035	0.03
Bromodichloromethane	0.1	< 0.050	< 0.050	< 0.050	-	< 0.050	550 (2)	NG
Bromoform	0.1	< 0.050	< 0.050	< 0.050	-	< 0.050	4 000 (2)	NG
Carbon tetrachloride	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	5 000 (2), 50 (3)	50
Chlorobenzene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	150 000 (2), 10 (3)	10
Chloroform	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	70 000 (2), 50 (3)	50
cis-1,2-Dichloroethene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	15 000 (2), 50 (3)	50
Dibromochloromethane	0.1	< 0.050	< 0.050	< 0.050	-	< 0.050	400 (2)	NG
Dichloromethane	0.1	< 0.050	< 0.050	< 0.050	-	< 0.050	40 000 (2), 50 (3)	50
Ethylbenzene	0.05	< 0.015	< 0.015	< 0.015	-	< 0.015	15	0.082
Methyl tert-butyl ether	0.04	< 0.050	< 0.050	< 0.050	-	< 0.050	20 000 (2)	NG
Styrene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	> 1 000mg/g (2), 50 (3)	50
Tetrachloroethylene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	2.5	50
Toluene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	0.5	0.37
trans-1,2-Dichloroethylene	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	150 000 (2), 50 (3)	NG
Trichloroethylene	0.01	< 0.010	< 0.010	< 0.010	-	< 0.010	0.3	0.01
Trichlorofluoromethane	0.1	< 0.050	< 0.050	< 0.050	-	< 0.050	70 000 (2)	NG
Vinyl chloride	0.05	< 0.050	< 0.050	< 0.050	-	< 0.050	45 (2)	NG
Xylenes (total)	0.075	< 0.075	< 0.075	< 0.075	-	< 0.075	6.5	11

NOTES

Results and standards in µg/g or parts per million (ppm) unless otherwise stated

RDL - Reported Detection Limit

- - Not analyzed / cannot be calculated

NS indicates that no standard applies

- 1 CSR Schedule 3.1, Part 1 Matrix Numerical Soil Standards unless noted otherwise
- 2 CSR Schedule 3.1 Part 2 Generic Soil Standards to Protect Human Health
- 3 CSR Schedule 3.1 Part 3 Generic Soil Standards to Protect Ecological Health
- 4 Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Environment and Human Health, 1999 Industrial Land Use, coarse soil

RPD - Relative Percentage Difference

BOLD Sample concentration exceeds the applicable standard or criteria

BOLD Sample concentration is detectable

BOLD RPD values exceed 20%

Table 5
Results of Soil Samples
Phenois Analyses
Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1@1.2m 15-Dec-2020	CSR Industrial Land Use	CCME CSQG Industrial Land Use (3)
2-Chlorophenol	0.020	< 0.020	35,000	5
3 & 4-Chlorophe nol	0.020	<0.020	20,000	5
2,3-Dichlorophenol	0.020	<0.020	20,000	5
2,4 & 2,5-Dichlorophenol	0.020	< 0.020	20,000	5
2,6-Dichlorophenol	0.020	<0.020	20,000	5
3,4-Dichlorophenol	0.020	<0.020	20,000	5
3,5-Dichlorophenol	0.020	<0.020	20,000	5
2,3,4-Trichlorophenol	0.020	<0.020	7,000	5
2,3,5-Trichlorophenol	0.020	<0.020	7,000	5
2,3,6-Trichlorophenol	0.020	<0.020	7,000	5
2,4,5-Trichlorophenol	0.020	<0.020	700,000	5
2,4,6-Trichlorophenol	0.020	<0.020	7,000	5
3,4,5-Trichlorophenol	0.020	<0.020	7,000	5
2,3,5,6-Tetrachlorophenol,	0.020	<0.028	20,000	5
2,3,4,6-Tetrachlorophenol	0.020	<0.020	200,000	5
Pentachlorophenol	0.020	<0.020	0.1-55	8
Phenol	0.020	<0.020	7	4
2-Methylphenol	0.020	<0.020	350000 (2)	NG
3-Methylphenol	0.020	<0.020	350000 (2)	NG
4-Methylphenol	0.020	<0.020	35000 (2)	NG
2,4-Dimethylphenol	0.020	<0.020	150000 (2)	NG

NOTES

Results and standards in μg/g or parts per million (ppm) unless otherwise stated

RDL - Reported Detection Limit

"-" - Not analyzed / cannot be calculated

NS indicates that no standard applies

NG indicates that no guidance applies

- 1- CSR, Schedule 3.1 Part 2 Generic Numerical Soil Standards to Protect Human Health
- 2- CSR, Schedule 3.1 Part 3 Generic Numerical Soil Standards to Protect Ecological Health
- 3 Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Environment and Human Health, 1999 - Industrial Land Use

BOLD Sample concentration exceeds the applicable standard or criteria

BOLD Sample concentration is detectable

Phase II Environmental Site Assessment Fraser Surrey Port Lands, Surrey, BC

Table 6 Results of Groundwater Samples Dissolved Metals Analyses Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1	20-MW2	20-MW3	20-DUP1	RPD	CSR AQUATIC LIFE STANDARDS (1)	CSR DRINKING WATER STANDARDS (1)	CCME Water Quality Guideline for the Protection of Aquatic Life Freshwater (7) and Marine Life (8) X 10	Federal Interiam Groundwater Guality Guidelines, Commercial and Industrial Land Uses (coarse soil) (9)	Guidelines for Canadian Drinking Water Quality (Health Canada 2020) (10)
Hardness mg/L	0.5	87.3	92.2	354	359	1%	NS	NS	NG	NG	NG
Aluminum	5	5.1	35.4	6.7	7.2	7%	NS	9 500	50-1000	50-1000	NG
Antimory	0.2	<0.10	0.12	0.15	0.15	0%	90 (2), 2 500 (3)	6	NG	2000	6
Arsenic	0.5	2.43	11.2	9,99	10,1	1%	50 (2), 125 (3)	10	50 (7), 125 (8)	5	100
Barium	5	94.1	66.4	310	296	5%	10 000 (2), 5 000 (3)	1 000	NG	500	2000
Beryllum	0.1	<0.100	<0.100	<0.100	<0.100	-	1.5 (2), 1 000 (3)	8	NG NG	5.3	NG
Boron	5	51	39	65	64	2%	12 000	5 000	15000 (7)	500	5000
Cadmium	0.01	<0.0050	<0.0150	0.0133	0.0158	-	0.5 - 4 (2), 15 (3)	5	0.14-0.37 (7), 1.2 (8)	0.017	7
Calcium	200	23400	26500	108000	111000	3%	NS NS	NS	NG	NG	NG
Chromium	0.5	0.14	1.03	0.56	0.61	-	10 (2,4), 90 (2,5), 15	50 (4), 6 000 (5)	10 (7), 15 (8)	8.9	50
Cobalt	0.1	1.82	0.72	6.77	6.77	0%	40	20 (8)	NG	50	NG
Copper	0.4	0.68	0.47	<0.20	<0.20	-	20 - 90 (2), 20 (3)	1 500	21-40 (7)	21-40	200
Iron	10	3340	2500	34900	35200	1%	NS	6 500	3000 (7)	300	NG
Lead	0.2	<0.050	<0.050	<0.050	< 0.050	-	40 - 160 (2), 20 (3)	10	25-70 (7)	25-70	5
Lithium	0.1	1.8	1.7	7.7	7.7	0%	NS	8	NG	NG	NG
Magnesium	10	7010	6490	20500	19900	3%	NS	NS	NG	NG	NG
Manganese	0.2	1690	877	4780	4680	2%	NS	1 500	NG	200	120
Mercury	0.1	<0.0050	<0.0050	<0.0050	<0.0050	-	0.25	1	0.26 (7), 0.16 (8)	0.026	1
Molybdenum	0.4	1.38	23.4	4.2	4.28	2%	10 000	250	730 (7)	73	NG
Nickel	0.5	2.82	1.63	5.45	5.36	2%	250 - 1 500 (2), 83 (3)	80	844-1500 (7)	844-1500	NG
Selenium	0.05	<0.050	0.175	0.463	0.46	1%	20	10	10 (7)	1	50
Silver	100	<0.010	<0.010	<0.010	<0.010		0.5 or 15 (2), 15 (3)	20	2.5 (7), 75 (8)	0.1	NG
Sodium	1	97100	102000	42000	41000	2%	NS	200 mg/L	NG	NG	NG
Strontium	0.02	156	122	510	528	3%	NS	2 500	NG	NG	7000
Thallium	0.2	<0.010	<0.010	<0.010	<0.010	•	3	NS	8 (7)	0.8	NG
Titanium	5	<0.30	3.06	0.58	0.52	٠	1 000	NS	NG	100	NG
Tin	0	0.11	0.14	<0.10	0.1		NS	2500	NG	NG	NG
Tungslen	0.001	<0.10	<0.10	<0.10	<0.10	-	NS	3	NG	NG	NG
Uranium	0.02	0.144	0.28	1.08	1.07	1%	85	20	150 (7)	10	20
Vanadium	1	0.54	4.09	0.84	0.82		NS	20	NG	100	NG
Zinc	4	1.9	1.3	3.6	3.8		75 - 2 400 (2), 100 (3)	3 000	300 (7)	10	NG
Chloride	0.50	64.5	41.4	7.40	7.42	-	1500mg/L (2)	250mg/L	1.200mg/L (7)	100mg/L	NG

NOTES

Results and standards in µg/L or parts per billion (ppb) unless otherwise stated

RDL - Reported Detection Limit

RPD - Relative Percent Difference

- "<" Sample concentration is below Reported Detection Limit
- " Not analyzed / cannot be calculated

NS indicates that no standard applies

NG indicates that no guidance applies

- 1 CSR Schedule 3.2, Numerical Water Standards unless noted otherwise
- 2 Standard for Freshwater Aquatic Life 3 - Standard for Marine Aquatic Life
- 4 Standard for Hexavalent Chromium
- 5 Standard for Trivalent Chromium
- 6- Cobalt Interim background groundwater estimate Moe Email dated 7 Nov 2017
- 7 CCME Water Quality Guide line for the Protection of Aquatic Lile Freshwater, 2018. All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME W QG)
- 8 CCME Water Quality Guideline for the Protection of Aquatic Lite Marine (2018). All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME W OG)
- 9 Federal Contaminated Siles Action Plan (FCSAP), Guidance Document on Federal Interiam Groundwater Quality Guidelines, November 2012, Commercial and Industrial Land Uses (coarse soil)
- 10 Guidelines for Canadian Drinking Water Quality (Health Canada, September 2020)

BOLD

Sample concentration exceeds the applicable standard or criteria RPD values exceed 20%

Table 7
Results of Groundwater Samples
Petroleum Hydrocarbons
Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1 17-Dec-2020	20-MW2 17-Dec-2020	20-MW3 17-Dec-2020	20-DUP1 17-Dec-2020	RPD, %	CSR AQUATIC LIFE STANDARDS (1)	Standards	CCME Water Quality Guideline for the Protection of Aquatic Life Freshwater (2) and Marine Life (3) X 10	Federal Interiam Groundwater Quality Guidelines, Commercial and Industrial Land Uses (coarse soil) (4)	Guidelines for Canadian Drinking Water Quality (Health Canada 2020) (5)
EPHw (10-19)	250	<250	<250	<250	<250	-	5000	5000	NG	NG	NG
EPHw (19-32)	250	<250	<250	<250	<250	-	NS	NS	NG	NG	NG
LEPHw	250	<250	<250	<250	<250	-	500	NS	NG	NG	NG
HEPHw	250	<250	<250	<250	<250	-	NS	NS	NG	NG	NG
F1 (C6-C10)	100	<100	-	-	-	-	NS	NS	9800 (2)	810	NG
F2 (C10-C16)	300	<300	-	,	-	-	NS	NS	NG	1300	NG
F3 (C16-C34)	300	<300	-	-	-	-	NS	NS	NG	NG	NG
F4 (C34-C50)	300	<300	-	-	-	-	NS	NS	NG	NG	NG
Acenaphthene	0.010	<0.010	<0.010	0.023	0.021	9%	60	250	58 (2)	5.8	NG
Acenaphthylene	0.010	< 0.010	<0.010	<0.010	<0.010	-	NS	NS	NG	4.6	NG
Acridine	0.010	< 0.010	<0.010	< 0.010	< 0.010	-	0.5	NS	44 (2)	0.05	NG
Anthracene	0.010	<0.010	<0.010	0.010	<0.010	-	1	1 000	0.12 (2)	0.012	NG
Anthraquinone, 9, 10-	0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	NS	4	NG	NG	NG
Benz (a) anthracene	0.010	< 0.010	<0.010	< 0.010	< 0.010	-	1	0.07	0.18 (2)	0.018	NG
Вепzо (а) рутеле	0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	-	0.1	0.01	0.15 (2)	0.01	0.04
Benzo (b+j) fluoranthenes	0.010	< 0.010	<0.010	<0.010	< 0.010	-	NS	0.07	NG	0.48	NG
Benzo (g, h,i) perylene	0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	NS	NS	NG	0.17	NG
Benzo (k) fluoranthene	0.010	<0.010	<0.010	<0.010	<0.010	-	N8	NS	NG	0.48	NG
Chrysene	0.010	< 0.010	<0.010	<0.010	< 0.010	-	1	7	NG	0.1	NG
Diberz (a,h) anthracene	0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	-	NS	0.01	NG	0.26	NG
Fluoranthene	0.010	<0.010	<0.010	<0.010	<0.010	-	2	150	0.4	0.04	NG
Fluorene	0.010	< 0.010	<0.010	<0.010	< 0.010	-	120	150	30	3	NG
Indeno (1,2,3-cd) pyrene	0.010	< 0.010	< 0.010	< 0.010	<0.010	-	NS	NS	NG	0.21	NG
Naphthalene	0.050	<0.050	<0.050	<0.050	<0.050	-	10	80	11 (2), 14(3)	1.1	NG
Phenanthrene	0.020	<0.020	<0.020	<0.020	<0.020	-	3	NS	4 (2)	4	NG
Pyrene	0.010	< 0.010	< 0.010	< 0.010	<0.010	-	0.2	100	0.25 (2)	0.025	NG
Quinoline	0.050	<0.050	< 0.050	< 0.050	< 0.050	-	34	0.05	34 (2)	3.4	NG

NOTES

BOLD

Results and standards in µg/L or parts per billion (ppb) unless otherwise stated

RDL - Reported Detection Limit

- "<" Sample concentration is below Reported Detection Limit
- "-" Not analyzed / cannot be calculated

NS indicates that no standard applies

NG - no guidance

- 1 CSR Schedule 3.2, Numerical Water Standards unless noted otherwise
- 2 CCME Water Quality Guideline for the Protection of Aquatic Life Freshwater, 2018. All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME WQG)
- 3 CCME Water Quality Guideline for the Protection of Aquatic Life Marine (2018). All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME W OG)
- 4 Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interiam Groundwater Quality Guidelines, November 2012, Commercial and Industrial Land Uses (coarse soil)
- 5 Guidelines for Canadian Drinking Water Quality (Health Canada, September 2020)

RPD - Relative Percentage Difference

Sample concentration exceeds the applicable standard or criteria

Sample concentration detectable

BOLD RPD values exceed 20%

Phase II Environmental Site Assessment Fraser Surrey Port Lands, Surrey, BC

Table 8 VOCs / VPH Analyses Page 1 of 1

PARAMETERS Sample Date	RDL	20-MW1	20-MW2	20-MW3	20-DUP1	RPD	CSR AQUATIC LIFE STANDARDS (1)	CSR DRINKING WATER STANDARDS (1)	CCME Water Quality Guideline for the Protection of Aquatic Life - Freshwater (4) and Marine Life (5) X 10*	Federal Imeriam Groundwater Quality Guidelines, Commercial and Industrial Land Uses (coarse soil) (6)	Guidelines for Canadian Drinking Water Quality (Health Canada 2010) (7)
VHw (8-10)	100	<100	<100	<100	<100	-	15000	15000	NG	NG	NG
VPHw	100	<100	<100	<100	<100	-	1500	NS	NG	NG	NG
1,1,1,2-Tetrachloroethane	1	<1.00	<0.50	<0.50	<0.50	-	NS	6	NG	3.3	NG
1,1,1-Trichloroethane	0.5	<0.50	<0.50	<0.50	<0.50	_	NS NS	8000	NG	640	NG NG
1,1,2,2-Tetrachloroethane	0.2	<0.20	<0.20	<0.20	<0.20	-	NS	0.8	NG	3.2	NG
1,1,2-Trichloroethane	0.5	<0.50	<0.50	<0.50	<0.50	-	NS	3	NG	4.7	NG
1,1-Dichloroethane	1	<1.00	<0.50	<0.50	<0.50	-	NS	30	NG	320	NG
1.1-Dichloroethwiene	1	<1.00	<0.50	<0.50	<0.50	-	NS	14	NG	NG	14
1,2-Dichlorobertzene	0.5	< 0.50	< 0.50	< 0.50	< 0.50	-	7 (2), 420 (3)	200	7 (4), 420 (5)	0.7	200
1,2-Dichloroethane	1	<1.00	< 0.50	< 0.50	< 0.50	-	1000	5	1000 (4)	5	- 5
1,2-Dichloropropane	1	<1.00	< 0.50	< 0.50	< 0.50	-	NS	4.5	NG	1.6	NG
1,3-Dichlorobertzene	1	<1.00	< 0.50	< 0.50	<0.50	-	1500	NS	1500 (4)	42	NG
1,3-Dichloropropene (cis + trans	1	<1.00	< 0.75	< 0.75	< 0.75	-	NS	1.5	NG	5.2	NG
1,4-Dichlorobertzene	1	<1.00	< 0.50	< 0.50	< 0.50	-	260	5	260 (4)	26	5
Benzene	0.5	< 0.50	< 0.50	< 0.50	< 0.50	-	400 (2), 1 000 (3)	5	3700 (4), 1100 (5)	8.8	-5
Bromodichloromethane	1	<1.00	< 0.50	< 0.50	< 0.50		NS	100	NG	8500	NG
Bromoform	1	<1.00	< 0.50	< 0.50	<0.50		NS	100	NG	390	NG
Carbon tetrachloride	0.5	< 0.50	< 0.50	< 0.50	<0.50	-	130	2	133 (4)	0.56	2
Chlorobenzene	1	<1.00	< 0.50	< 0.50	< 0.50	-	13 (2), 250 (3)	90	13 (4), 250 (5)	1.3	NG
Chloroform	1	<1.00	< 0.50	< 0.50	< 0.50		20	100	18 (4)	NG	NG
cis-1,2-Dichloroethylene	0.5	< 0.50	< 0.50	< 0.50	< 0.50		NS	8	NG	1.6	NG
Dibromochloromethane	1	<1.00	< 0.50	<0.50	< 0.50		NS	100	NG	100	NG
Dichloromethane	5	<5.00	<0.50	<0.50	<0.50	-	980	50	981 (4)	NG	NG
Ethylberizene	0.5	<0.50	<0.50	<0.50	<0.50	-	2 000 (2), 2 500 (3)	140	900 (4), 250 (5)	3,200	140
Methyl tert-butyl ether	0.5	< 0.50	<0.50	<0.50	< 0.50		34 000 (2), 4 400 (3)	95	100,000 (4), 50,000(5)	340	NG
Styrene	0.5	<0.50	<0.50	<0.50	<0.50		720	800	720 (4)	7.2	NG
Tetrachloroethylene	1	<1.00	<0.50	<0.50	<0.50		1 100	30	1100 (4)	110	10
Toluene	0.4	<0.40	<0.40	<0.40	<0.40		5 (2), 2 000 (3)	60	20 (4), 2150 (5)	8.3	60
trans-1,2-Dichloroethylene	1	<1.00	<0.50	<0.50	<0.50	-	NS	90	NG	1.6	NG
Trichloroethylene	1	<1.00	<0.50	<0.50	<0.50		200	5	210 (4)	20	5
Trichlorofluoromethane	1	<1.00	<0.50	<0.50	<0.50		NS	1 000	NG	NG	NG
Vinyl chloride	0.4	<0.40	<0.40	<0.40	<0.40		NS	2	NG	1.1	2
Xylenes (total)	0.75	<0.75	<0.75	<0.75	<0.75		300	90	NG	3,900	90

NOTES

Results and standards in µg/L or parts per billion (ppb) unless otherwise stated

RDL - Reported Detection Limit

RPD - Relative Percent Difference

- "<" Sample concentration is below Reported Detection Limit
- "-" Not analyzed / cannot be calculated

NS indicates that no standard applies

NG - no guidance

- 1 CSR Schedule 3.2, Numerical Water Standards unless noted otherwise
- 2 Standard for Freshwater Aquatic Life
- 3 Standard for Marine Aquatic Life
- 4 CCME Water Quality Guideline for the Protection of Aquatic Life Freshwater, 2018. All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME W QG)
- 5 CCME Water Quality Guideline for the Protection of Aquatic Life Marine (2018). All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME WOG)
- 6 Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interiam Groundwater Quality Guidelines, November 2012, Commercial and Industrial Land Uses (coarse soil)
- 7 Guidelines for Canadian Drinking Water Quality (Health Canada, September 2020)

Sample concentration exceeds the applicable standard or criteria BOLD

BOLD Sample concentration detectable

BOLD RPD values exceed 20%

Table 9 Results of Groundwater Samples Phenols Analyses

Page 1 of 1

PARAMETERS	RDL	20-MW1	CSR AQUATIC LIFE STANDARDS (1)	CSR Drinking Water Standards	CCME Water Quality Guideline for the Protection of Aquatic Life - Freshwater Life X		Federal Interiam Groundwater Quality Guidelines, Commercial and Industrial Land Uses	Guidelines for Canadian Drinking Water Quality (Health Canada 2010)
Sample Date	HUL	17-Dec-2020	STANDANDS(I)	Standards	10 (2)	Marine Life X 10 (3)	(coarse soil) (4)	(5)
2-Chlorophenol	0.05	<0.050	19.5	45	70	NG	330	NG
3-Chlorophenol	0.05	< 0.050	17	0.1	70	NG	NG	NG
4-Chlorophenol	0.05	< 0.050	8.5	NS	70	NG	NG	NG
2,3-Dichlorophenol	0.05	< 0.050	5.5-760	NS	2	NG	NG	NG
2,4 & 2,5-Dichlorophenol	0.05	< 0.050	2.5-400	900	2	NG	0.2	900
2,6-Dichlorophenol	0.05	< 0.050	10-1360	NS	2	NG	NG	NG
3,4-Dichlorophenol	0.05	< 0.050	3-400	NS	2	NG	NG	NG
3,5-Dichlorophenol	0.05	< 0.050	2.5-300	NS	2	NG	NG	NG
2,3,4-Trichlorophenol	0.1	< 0.10	2.5-320	NS	180	NG	NG	NG
2,3,5-Trichlorophenol	0.1	< 0.10	2.5-340	NS	180	NG	NG	NG
2,3,6-Trichlorophenol	0.1	< 0.10	8-1080	NS	180	NG	NG	NG
2,4,5-Trichlorophenol	0.1	< 0.10	2.5-300	400	180	NG	160	NG
2,4,6-Trichlorophenol	0.1	< 0.10	6-800	5	180	NG	18	5
3,4,5-Trichlorophenol	0.1	< 0.10	1-128	NS	180	NG	NG	NG
tetrachlorophenol, 2,3,4,5-	0.1	< 0.10	2-260	NS	10	NG	NG	NG
tetrachlorophenol, 2,3,5,6-	0.1	< 0.10	2.5-340	NS	10	NG	NG	NG
2,3,4,6-Tetrachlorophenol	0.1	< 0.10	5.5-720	100	10	NG	1	100
Pentachlorophenol	0.1	< 0.10	1-110	60	5	NG	0.5	60
Phenol	0.2	< 0.20	2000	1000	40	NG	4	NG
2-Methylphenol	0.5	< 0.50	2500	200	NG	NG	NG	NG
3 & 4-Methylphenol	0.2	< 0.20	700	200	NG	NG	NG	NG
2,4-Dimethylphenol	0.2	< 0.20	NS NS	80	NG	NG	NG	NG

NOTES

Results and standards in µg/L or parts per billion (ppb) unless otherwise stated

RPD - Relative Percent Difference

RDL - Reported Detection Limit

< - Sample concentration is below Reported Detection Limit

NS indicates that no standard applies

NG - no guidance

- 1 CSR Schedule 3.2, Numerical Water Standards unless noted otherwise
- 2 CCME Water Quality Guideline for the Protection of Aquatic Life Freshwater
- 3 CCME Water Quality Guideline for the Protection of Aquatic Life Marine
- 4 Federal Contaminated Sites Action Plan (FCSAP), Guidance Document on Federal Interiam Groundwater Quality Guidelines, November 2012, Commercial and Industrial Land Uses (coarse soil)
- 5 Guidelines for Canadian Drinking Water Quality (Health Canada, September 2020)

BOLD Sample concentration exceeds the applicable standard or criteria

BOLD Sample concentration detectable

BOLD RPD values exceed 20%

"CCME Water Quality Guideline for the Protection of Aquatic Life, Freshwater and Marine, updated to 2018. All values are multiplied by an assumed x10 dilution factor for groundwater entering surface water (according to Chapter 4 CCME WQG)

Phase II Environmental Site Assessment Fraser Surrey Port Lands, Surrey, BC

Table 10 Results of Vapour Samples VOC Analyses Page 1 of 1

Sample			20-VP1			26-DUP1		RPD (%)		20-VP2		CSR IL Standards
Sample Date			22-Jan-21			22-Jan-21		5 (~)		22-Jan-21		
Sample Depth (m)	1		0.91m			0.91m				0.91m		
	1		Indoor Atten.	Outdoor Atten.		Indoor Atten.	Outdoor Atten.			Indoor Atten.	Outdoor Atten.	
DADAMETERS	nn.	Unattenuated	Factor	Factor	Unattenuated	Factor	Factor		Unattenuated	Factor	Factor	
PARAMETERS	RDL		0.02	0.0001	•	0.02	0.0001			0.02	0.0001	
VHv (6-13)	1000	<1000	-	-	<1000	-	-		1000	20	0.1	NS
VPHv	1000	<1000	-	-	<1000	-	-		1000	20	0.1	11 500
1,1,1,2-Tetrachioroethane	1.0	<1.0	-	-	<1.0	-	-		<1.0	-	-	10
1,1,1-Trichloroethane	5.0	<5.0	-	-	<5.0	-	-		< 5.0	-	-	45 000
1,1,2,2-Tetrachioroethane	0.60	<0.60	-	-	< 0.60	-	-		< 0.60	-	-	800
1,1,2-Trichloroethane	0.40	<0.40	-	-	< 0.40		-		<0.40	-	-	2
1,1-Dichloroethane	5.0	<5.0	-	-	<5.0	-	-		< 5.0	-	-	4 500
1,1-Dichloroethylene	0.50	< 0.50	-	-	< 0.50	-	-		< 0.50	-	-	2 000
1,2-Dichlorobenzene	30	<30	-	-	<30	-	-		<30	-	-	2 000
1,2-Dichloroethane	0.40	< 0.40	-	-	< 0.40	-	-		< 0.40	-	-	65
1,2-Dichloropropane	0.50	< 0.50	-	-	< 0.50	-	-		< 0.50	-	-	36
1,3-Dichlorobenzene	10	<10	-	-	<10	-	-		<10	-	-	1 000
1,3-Dichloropropene (cis + trans)	1.5	<1.5	-	-	<1.5	-	-		<1.5	-	-	26
1,4-Dichlorobenzene	10	<10	-	-	<10	-	-		<10	-	-	7 500
Benzene	1.5	<1.5	-	-	<1.5	-	-		<1.5	-	-	10
Bromodichloromethane	0.50	< 0.50	-	-	< 0.50	-	-		< 0.50	-	-	800
Bromoform	6.0	<6.0	-	-	<6.0	-	-		<6.0	-	-	86
Carbon tetrachloride	0.40	< 0.40	-	-	< 0.40	-	-		< 0.40	-	-	15
Chlorobenzene	5.0	<5.0	-	-	< 6.0	-	-		< 5.0	-	-	90
Chloroethane	100	<100	-	-	<100	-	-		<100	-	-	90 000
Chloroform	0.60	< 0.60	-	-	< 0.60	-	-		< 0.60	-	-	900
chloromethane	5.6	< 5.6	-	-	< 5.6	-	-		< 5.6	-	-	800
cis-1,2-Dichloroethylene	10	<10	-	-	<10	-	-		<10	-	-	560
Dibromochloromethane	20	<20	-	-	<20	-	-		<20	-	-	800
Dichloromethane	10	<10	-	-	<10	-	-		<10	-	-	5 500
Ethylbenzene	5.0	< 5.0	-	-	<6.0	-	-		< 5.0	-	-	9 000
Methyl tert-butyl ether	50	<50	-	-	<50	-	-		<50	-	-	25 000
n-Decane	50	< 50	-	-	<50	-	-		<50	-	-	25 000
n-Hexane	50	<50	-	-	<50	-	-		<50	-	-	6 500
Styrene	5.0	<5.0	-	-	<6.0	-	-		<5.0	-	-	9 000
Tetrachloroethylene	20	32	0.64	0.0032	34	0.68	0.0034	6%	38	0.76	0.0038	360
Toluene	40	<40	-	-	<40	-	-	3	<40	-	-	45 000
trans-1,2-Dichloroethylene	10	<10	-	-	<10	-	-		<10	-	-	560
Trichloroethylene	0.40	<0.40	-	-	< 0.40	-	-		<0.40	-	-	20
Trichlorofluoromethane	50	<50	-	-	<50	-	-		<50	-	-	6 500
Vinyl chloride	0.50	<0.50	-	-	< 0.50	-	-		<0.50	-	-	10
Xylenes (total)	12	<12	-	-	<12	-	-		<12	-	-	900

NOTES

Results reported in µg/m3 unless otherwise stated

RDL - Reported Detection Limit

"<" - Sample concentration is below Reported Detection Limit
"-" - Not analyzed / cannot be calculated

NS indicates that no standard applies 1 - CSR Schedule 3.3, General Numeric Vapour Standards

RPD - Relative Percentage Difference

Attenuated sample concentration exceeds the applicable CSR standard Sample concentration detectable

BOLD BOLD

BOLD RPD values exceed 20%

APPENDIX

CHAIN OF CUSTODY FORMS AND LABORATORY CERTIFICATES

CERTIFICATE OF ANALYSIS

Work Order : VA20C3415

Client : WSP Canada Inc.

Contact : Marina Makovetski

Address : Unit 100 - 20339 96 Avenue

Langley BC Canada V1M 2L1

Telephone : 604-353-7077
Project : 20M-00758-00

PO : ---

C-O-C number : 17-865484 Sampler : MM/RC

Sampler : MM/F Site : ----

Quote number : ---No. of samples received : 17
No. of samples analysed : 8

Page : 1 of 13

Laboratory : Vancouver - Environmental

Account Manager : Carla Fuginski

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 15-Dec-2020 15:30

Date Analysis Commenced : 17-Dec-2020

Issue Date : 23-Dec-2020 13:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

 Page
 : 2 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/g	micrograms per gram
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Workorder Comments

Please note: F1/VOC data was not possible for 20-MW2@0.3m, as we did not recieve vials for this sample

Qualifiers

DLCI Detection Limit Raised: Chromatographic interference due to co-elution.	

 Page
 : 3 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil			CI	ient sample ID	20-MW1@0.3m	20-MW1@0.6m	20-MW1@1.2m	20-MW2@0.3m	20-MW2@0.6m
(Matrix: Soil/Solid)									
			Client compli	ng date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020
		14-HJ		_					
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-001	VA20C3415-002	VA20C3415-003	VA20C3415-007	VA20C3415-008
					Result	Result	Result	Result	Result
Physical Tests moisture		E144	0.25	%			23.1	14.0	
pH (1:2 soil:water)		E108	0.20		8.80	8.90	8.50	7.84	8.09
	_	E 106	0.10	pH units	0.00	0.80	0.50	7.04	6.09
Non-Chlorinated Phenolics	405.07.0	E651A	0.020				<0.020		
dimethylphenol, 2,4-	105-67-9			h8/8					
methylphenol, 2-	95-48-7		0.020	h8/8			<0.020		
methylphenol, 3-	108-39-4		0.020	h8/8			<0.020		
methylphenol, 4-	108-44-5		0.020	h8/8			<0.020		
phenol	108-95-2	E651A	0.020	ha/a			<0.020		
Metals									
aluminum	7429-90-5	E440	50	h8/8	9840	9600	9230	14800	10800
antimony	7440-36-0	E440	0.10	h8/8	0.22	0.20	0.18	0.51	0.33
arsenic	7440-38-2		0.10	h8/8	3.13	3.26	2.79	5.64	4.02
barium	7440-39-3	E440	0.50	µg/g	50.9	52.8	48.7	97.8	86.5
beryllium	7440-41-7	E440	0.10	µg/g	0.19	0.18	0.16	0.32	0.23
bismuth	7440-69-9	E440	0.20	ha/a	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	µg/g	<5.0	<5.0	<5.0	<5.0	<5.0
cadmium	7440-43-9	E440	0.020	ha\a	0.120	0.124	0.126	0.322	0.155
calcium	7440-70-2	E440	50	µg/g	5240	4570	4260	6810	5460
chromium	7440-47-3	E440	0.50	µg/g	30.8	23.2	22.8	37.3	33.1
cobalt	7440-48-4	E440	0.10	µg/g	8.11	8.06	7.12	12.1	9.35
copper	7440-50-8		0.50	µg/g	15.8	14.9	13.7	31.2	19.3
iron	7439-89-6		50	h8/8	18200	17500	16100	25800	20200
lead	7439-92-1	E440	0.50	µg/g	2.65	2.14	2.06	19.0	4.26
lithium	7439-93-2		2.0	µg/g	8.0	7.3	7.1	13.1	9.4
magnesium	7439-95-4		20	µg/g	7530	7430	7040	9580	8550
manganese	7439-96-5		1.0	µg/g	398	348	299	607	365
mercury	7439-97-6		0.0500	µg/g	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
molybdenum	7439-98-7		0.10	µg/g	0.33	0.34	0.30	0.71	0.43
nickel	7440-02-0		0.50	µg/g	32.8	34.2	30.6	42.9	37.1
phosphorus	7723-14-0		50	h8/8	451	438	410	580	505
potassium			100		510	480	470	900	650
potassiulii	7440-09-7	C770	100	h8/8	510	400	470	800	UJU

 Page
 : 4 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil			G	lient sample ID	20-MW1@0.3m	20-MW1@0.6m	20-MW1@1.2m	20-MW2@0.3m	20-MW2@0.6m
(Matrix: Soil/Solid)									
			Client sampl	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-001	VA20C3415-002	VA20C3415-003	VA20C3415-007	VA20C3415-008
Analyte	OAS Number				Result	Result	Result	Result	Result
Metals									
selenium	7782-49-2	E440	0.20	µg/g	<0.20	<0.20	<0.20	0.36	<0.20
silver	7440-22-4		0.10	µg/g	<0.10	<0.10	<0.10	0.14	<0.10
sodium	7440-23-5	E440	50	µg/g	317	305	284	325	273
strontium	7440-24-6		0.50	µg/g	21.3	20.5	20.8	41.3	36.3
sulfur	7704-34-9		1000	µg/g	<1000	<1000	<1000	<1000	<1000
thallium	7440-28-0	E440	0.050	µg/g	<0.050	<0.050	<0.050	0.093	0.052
tin	7440-31-5		2.0	µg/g	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	µg/g	814	738	741	883	827
tungsten	7440-33-7	E440	0.50	µg/g	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	µg/g	0.296	0.221	0.261	0.657	0.339
vanadium	7440-62-2	E440	0.20	µg/g	45.1	41.4	39.6	52.0	44.9
zinc	7440-66-6	E440	2.0	µg/g	40.8	38.0	35.2	64.8	46.2
zirconium	7440-67-7	E440	1.0	µg/g	5.0	4.6	4.7	7.4	6.2
Volatile Organic Compounds									
chlorobenzene	108-90-7	E611C	0.050	ha\a			<0.050		
chloromethane	74-87-3	E611C	0.050	µg/g			<0.050		
dichlorobenzene, 1,2-	95-50-1	E611C	0.050	hã/ã			<0.050		
dichlorobenzene, 1,3-	541-73-1	E611C	0.050	µg/g			<0.050		
dichlorobenzene, 1,4-	108-46-7	E611C	0.050	ha\a			<0.050		
dichloropropane, 1,2-	78-87-5	E611C	0.050	ha\a			<0.050		
dichloropropylene, cis+trans-1,3-	0.2.00		0.075	ha/a			<0.075		
dichloropropylene, cis-1,3-	10061-01-5		0.050	ha\a			<0.050		
tetrachloroethane, 1,1,1,2-	630-20-6		0.050	µg/g			<0.050		
tetrachloroethane, 1,1,2,2-	79-34-5		0.050	µg/g			<0.050		
trichloroethane, 1,1,2-	79-00-5		0.050	h8/8			<0.050		
trichlorofluoromethane	75-69 -4	E611C	0.050	ha\a		-	<0.050		
Volatile Organic Compounds [Drycleaning]		E8440	0.050				40.000		
carbon tetrachloride	56-23-5		0.050	h8/8			<0.050		
chloroethane	75-00-3		0.050	h8/8			<0.050		
dichloroethane, 1,1-	75-34-3		0.050 0.050	h8/8			<0.050		
dichloroethane, 1,2-	107-08-2			µg/g			<0.050		
dichloroethylene, 1,1-	75-35-4	E011C	0.050	h8/8			<0.050		

 Page
 : 5 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil			G	lient sample ID	20-MW1@0.3m	20-MW1@0.6m	20-MW1@1.2m	20-MW2@0.3m	20-MW2@0.6m
(Matrix: Soil/Solid)									
			Client sampl	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-001	VA20C3415-002	VA20C3415-003	VA20C3415-007	VA20C3415-008
					Result	Result	Result	Result	Result
Volatile Organic Compounds [Drycleaning]									
dichloroethylene, cis-1,2-	156-59-4	E611C	0.050	µg/g			<0.050		
dichloroethylene, trans-1,2-	156-60-5	E611C	0.050	µg/g			<0.050		
dichloromethane	75-09-2	E611C	0.050	µg/g			<0.050		
dichloropropylene, trans-1,3-	10061-02-6	E611C	0.050	µg/g			<0.050		
tetrachloroethylene	127-18-4	E611C	0.050	µg/g			<0.050		
trichloroethane, 1,1,1-	71-55-6	E611C	0.050	µg/g			<0.050		
trichloroethylene		E611C	0.010	µg/g			<0.010		
vinyl chloride		E611C	0.050	µg/g			<0.050		
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611C	0.0050	µg/g			<0.0050		
ethylbenzene	100-41-4	E611C	0.015	µg/g			<0.015		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.050	µg/g			<0.050		
styrene	100-42-5	E611C	0.050	µg/g			<0.050		
toluene	108-88-3		0.050	µg/g			<0.050		
xylene, m+p-	179601-23-1	E611C	0.050	µg/g			<0.050		
xylene, o-	95-47-6	E611C	0.050	µg/g			<0.050		
xylenes, total	1330-20-7	E611C	0.075	µg/g			<0.075		
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611C	0.050	96			92.0		
difluorobenzene, 1,4-	540-36-3		0.050	%			87.3		
Hydrocarbons									
chromatogram to baseline at nC50		E601.SG	-	µg/g			No	Yes	
EPH (C10-C19)		E601A	200	µg/g			<200	<200	
EPH (C19-C32)		E601A	200	µg/g			<200	<200	
F1-BTEX		EC580	5.0	mg/kg		_	<5.0		
F2 (C10-C16)		E601.SG	25	µg/g		_	<25	<25	
F3 (C16-C34)		E601.SG	50	µg/g			<50	<50	
F4 (C34-C50)		E601.SG	50	µg/g			<50	<50	
TEH (C10-C50)		E601.SG	75	μg/g			<75	<75	
TEH (C16-C50)		E601.SG	75	μg/g			<75	<75	
VHs (C6-C10)		E581.VH+F1	10	μg/g			<10		
HEPHs		EC600A	200	μg/g			<200	<200	
1			1	Foo		l			l

 Page
 : 6 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil			CI	lient sample ID	20-MW1@0.3m	20-MW1@0.6m	20-MW1@1.2m	20-MW2@0.3m	20-MW2@0.6m
(Matrix: Soil/Solid)									
			Client sampli	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-001	VA20C3415-002	VA20C3415-003	VA20C3415-007	VA20C3415-008
Analyte	CAS Number		2011		Result	Result	Result	Result	Result
Hydrocarbons							1122		
LEPHs		EC600A	200	µg/g			<200	<200	
VPHs		EC580A	10	µg/g			<10		
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	5.0	96			107	102	
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6		10	96			87.6	93.4	
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%			72.4		
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A-L	0.0050	µg/g			<0.0050	<0.0050	
acenaphthylene	208-96-8	E641A-L	0.0050	µg/g			0.0187	0.0130	
acridine	260-94-6	E641A-L	0.010	µg/g			<0.010	<0.010	
anthracene	120-12-7	E641A-L	0.0040	µg/g			<0.0040	0.0101	
benz(a)anthracene	56-55-3	E641A-L	0.010	µg/g			<0.010	0.016	
benzo(a)pyrene	50-32-8	E641A-L	0.010	µg/g			<0.010	0.013	
benzo(b+j)fluoranthene	_	E641A-L	0.010	µg/g			<0.010	0.017	
benzo(b+j+k)fluoranthene	_	E641A-L	0.015	µg/g			<0.015	0.017	
benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	µg/g			<0.010	<0.010	
benzo(k)fluoranthene	207-08-9	E641A-L	0.010	µg/g			<0.010	<0.010	
chrysene	218-01-9	E641A-L	0.010	µg/g			<0.010	0.015	
dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	µg/g			<0.0050	<0.0050	
fluoranthene	206-44-0	E641A-L	0.010	µg/g			<0.010	0.039	
fluorene	86-73-7	E641A-L	0.010	µg/g			<0.010	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	h8/8			<0.010	<0.010	
methylnaphthalene, 1-	90-12-0	E641A-L	0.010	µg/g			<0.010	<0.010	
methylnaphthalene, 2-	91-57-6	E641A-L	0.010	µg/g			<0.010	<0.010	
naphthalene	91-20-3	E641A-L	0.010	h8/8			<0.010	<0.010	
phenanthrene	85-01-8	E641A-L	0.010	µg/g			<0.010	0.023	
pyrene	129-00-0	E641A-L	0.010	h8/8			<0.010	0.024	
quinoline	6027-02-7	E641A-L	0.010	µg/g			<0.010	<0.010	
B(a)P total potency equivalents [B(a)P TPE]		E641A-L	0.020	µg/g			<0.020	0.020	
IACR (CCME)	_	E641A-L	0.15	-			<0.15	0.24	
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A-L	0.010	%			108	85.1	

 Page
 : 7 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil			c	lient sample ID	20-MW1@0.3m	20-MW1@0.6m	20-MW1@1.2m	20-MW2@0.3m	20-MW2@0.6m
(Matrix: Soil/Solid)									
			Client sampl	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020	15-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-001	VA20C3415-002	VA20C3415-003	VA20C3415-007	VA20C3415-008
Analyte	ONO Number				Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
chrysene-d12	1719-03-5	E641A-L	0.010	96			108	110	
naphthalene-d8	1146-65-2		0.010	96			88.0	89.2	
phenanthrene-d10	1517-22-2	E641A-L	0.010	%			108	109	
Volatile Organic Compounds [THMs]									
bromodichloromethane	75-27-4	E611C	0.050	µg/g			<0.050		
bromoform	75-25-2	E611C	0.050	µg/g			<0.050		
chloroform	67-66-3	E611C	0.050	µg/g			<0.050		
dibromochloromethane	124-48-1	E611C	0.050	µg/g			<0.050		
Phenolics									
chlorophenol, 2-	95-57-8	E651A	0.020	µg/g			<0.020		
chlorophenol, 3-	108-43-0	E651A	0.020	µg/g			<0.020		
chlorophenol, 4-	106-48-9	E651A	0.020	µg/g			<0.020		
dichlorophenol, 2,3-	576-24-9	E651A	0.020	µg/g			<0.020		
dichlorophenol, 2,4- + 2,5-		E651A	0.020	µg/g			<0.020		
dichlorophenol, 2,6-	87-65-0	E651A	0.020	µg/g			<0.020		
dichlorophenol, 3,4-	95-77-2	E651A	0.020	h8/8			<0.020		
dichlorophenol, 3,5-	591-35-5	E651A	0.020	µg/g			<0.020		
methylphenol, 4-chloro-3-	59-50-7	E651A	0.020	µg/g			<0.020		
trichlorophenol, 2,3,4-	15950-66-0	E651A	0.020	µg/g			<0.020		
trichlorophenol, 2,3,5-	933-78-8	E651A	0.020	µg/g		-	<0.020		
trichlorophenol, 2,3,6-	933-75-5	E651A	0.020	µg/g		-	<0.020		
trichlorophenol, 2,4,5-	95-95-4	E651A	0.020	µg/g		-	<0.020		
trichlorophenol, 2,4,6-	88-06-2	E651A	0.020	µg/g		-	<0.020		
trichlorophenol, 3,4,5-	609-19-8	E651A	0.020	µg/g		-	<0.020		
tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.020	µд/д		-	<0.020		
tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.020	µg/g		-	<0.020		
tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.020	µg/g		-	<0.028 ^{04.01}		
pentachlorophenol [PCP]	87-86-5	E651A	0.020	µg/g			<0.020		
Phenolics Surrogates									
chlorophenol-d4, 2-	93951-73-6	E651A	0.020	%		-	99.5		
dichlorophenol-d3, 2,4-	93951-74-7	E651A	0.020	96		_	97.2		
tribromophenol, 2,4,6-	118-79-6	E651A	0.020	96		-	107		

 Page
 : 8 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Please refer to the General Comments section for an explanation of any qualifiers detected.

 Page
 : 9 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Client sampling date / time	
Analyte CAS Number Method LOR Unit VA20C3415-012 VA20C3415-013 VA20C3415-017	
Analyte CAS Number Method LOR Unit VA20C3415-012 VA20C3415-013 VA20C3415-017	
Physical Tests Phy	
Metals	
Metals	
Metals aluminum 7429-90-5 E440 50 μg/g 15800 19900 10300 antimony 7440-38-0 E440 0.10 μg/g 0.46 0.57 0.34 arsenic 7440-38-2 E440 0.10 μg/g 5.44 7.80 4.02 beryllium 7440-39-3 E440 0.50 μg/g 111 145 78.8 beryllium 7440-41-7 E440 0.10 μg/g 0.31 0.40 0.22 bismuth 7440-89-9 E440 0.20 μg/g <0.20 <0.20 <0.20	
aluminum 7429-90-5 E440 50 µg/g 15600 19900 10300 — antimony 7440-38-0 E440 0.10 µg/g 0.45 0.57 0.34 — arsenic 7440-38-2 E440 0.10 µg/g 5.44 7.80 4.02 — barium 7440-39-3 E440 0.50 µg/g 111 145 76.8 — beryllium 7440-41-7 E440 0.10 µg/g 0.31 0.40 0.22 — beryllium 7440-49-9 E440 0.20 µg/g 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	=
antimony 7440-38-0 E440 0.10 μg/g 0.45 0.57 0.34 — arsenic 7440-38-2 E440 0.10 μg/g 5.44 7.80 4.02 — barium 7440-39-3 E440 0.50 μg/g 111 145 76.8 — beryllium 7440-41-7 E440 0.10 μg/g 0.31 0.40 0.22 — bismuth 7440-89-8 E440 0.20 μg/g <0.20 <0.20 <0.20 <0.20 — boron 7440-42-8 E440 5.0 μg/g <0.50 <5.0 <5.0 — cadmium 7440-43-8 E440 0.020 μg/g 0.210 0.311 0.170 — calcium 7440-43-8 E440 0.020 μg/g 9280 10400 5390 — chromium 7440-47-3 E440 0.50 μg/g 38.7 48.7 28.2 — cobalt 7440-48-4 E440 0.10 μg/g 28.5 37.8 </th <td></td>	
arsenic 7440-38-2 E440 0.10 μg/g 5.44 7.80 4.02 — barium 7440-39-3 E440 0.50 μg/g 111 145 76.8 — beryllium 7440-41-7 E440 0.10 μg/g 0.31 0.40 0.22 — bismuth 7440-89-9 E440 0.20 μg/g <0.20 <0.20 <0.20 — boron 7440-42-8 E440 5.0 μg/g 0.210 0.311 0.170 — calcium 7440-70-2 E440 50 μg/g 0.280 10400 5390 — chromium 7440-47-3 E440 0.50 μg/g 38.7 46.7 28.2 — cobalt 7440-48-4 E440 0.10 μg/g 12.4 15.7 8.97 — copper 7440-50-8 E440 0.50 μg/g 27000 32400 18300 — copper 7440-50-8 E440 0.50 μg/g 27000 32400 18300 — lead 7439-92-1 E440 0.50 μg/g 14.0 18.6 9.3 — inn 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 — magnesium 7439-95-4 E440 2.0 μg/g 10400 12300 7940 — manganese 7439-96-5 E440 1.0 μg/g 547 672 370 — mercury 7439-97-8 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500 — colotto 1.0 μg/g 1.0000 1.0000 — colotto 1.0 μg/g 547 672 370 — colotto 1.0 μg	
barium 7440-39-3 E440 0.50 μg/g 111 145 76.8 — beryllium 7440-41-7 E440 0.10 μg/g 0.31 0.40 0.22 — bismuth 7440-89-8 E440 0.20 μg/g <0.20 <0.20 <0.20 — boron 7440-42-8 E440 5.0 μg/g <5.0 <5.0 <5.0 — cadmium 7440-43-9 E440 0.020 μg/g 0.210 0.311 0.170 — calcium 7440-70-2 E440 50 μg/g 9280 10400 5390 — chromium 7440-47-3 E440 0.50 μg/g 38.7 48.7 28.2 — cobalt 7440-48-4 E440 0.10 μg/g 28.5 37.8 18.97 — copper 7440-50-8 E440 0.50 μg/g 28.5 37.8 18.9 — lead	
beryllium	
bismuth 7440-89-9 E440 0.20 µg/g <0.20 <0.20 <0.20 —— boron 7440-42-8 E440 5.0 µg/g <5.0 <5.0 <5.0 —— cadmium 7440-43-9 E440 0.020 µg/g 0.210 0.311 0.170 —— calcium 7440-70-2 E440 50 µg/g 9280 10400 5390 —— chromium 7440-47-3 E440 0.50 µg/g 38.7 46.7 28.2 —— cobalt 7440-48-4 E440 0.10 µg/g 12.4 15.7 8.97 —— copper 7440-50-8 E440 0.50 µg/g 28.5 37.8 18.9 —— iron 7439-89-6 E440 50 µg/g 27000 32400 19300 —— lead 7439-92-1 E440 0.50 µg/g 5.51 9.07 4.74 —— lithium 7439-93-2 E440 2.0 µg/g 14.0 18.6 9.3 —— magnesium 7439-95-6 E440 1.0 µg/g 547 672 370 —— mercury 7439-97-8 E510 0.0500 µg/g 0.0528 <0.0500 <0.0500 ——	
boron 7440-42-8 E440 5.0 μg/g <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <	
cadmium 7440-43-9 E440 0.020 μg/g 0.210 0.311 0.170 — calcium 7440-70-2 E440 50 μg/g 9280 10400 5390 — chromium 7440-47-3 E440 0.50 μg/g 38.7 46.7 28.2 — cobalt 7440-48-4 E440 0.10 μg/g 12.4 15.7 8.97 — copper 7440-50-8 E440 0.50 μg/g 28.5 37.8 18.9 — iron 7439-89-6 E440 50 μg/g 27000 32400 19300 — lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 — lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 — magnesium 7439-95-4 E440 20 μg/g 547 672 370 — mercury 7439-97	
calcium 7440-70-2 E440 50 μg/g 9280 10400 5390 — chromium 7440-47-3 E440 0.50 μg/g 38.7 48.7 28.2 — cobalt 7440-48-4 E440 0.10 μg/g 12.4 15.7 8.97 — copper 7440-50-8 E440 0.50 μg/g 28.5 37.8 18.9 — iron 7439-89-6 E440 50 μg/g 27000 32400 19300 — lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 — lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 — magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 — manganese 7439-96-5 E440 1.0 μg/g 547 672 370 — mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500 —	
chromium 7440-47-3 E440 0.50 μg/g 38.7 46.7 28.2 cobalt 7440-48-4 E440 0.10 μg/g 12.4 15.7 8.97 copper 7440-50-8 E440 0.50 μg/g 28.5 37.8 18.9 iron 7439-89-6 E440 50 μg/g 27000 32400 19300 lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 manganese 7439-97-6 E440 1.0 μg/g 547 672 370 mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500	
cobalt 7440-48-4 E440 0.10 μg/g 12.4 15.7 8.97 — copper 7440-50-8 E440 0.50 μg/g 28.5 37.8 18.9 — iron 7439-89-6 E440 50 μg/g 27000 32400 19300 — lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 — lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 — magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 — manganese 7439-96-5 E440 1.0 μg/g 547 672 370 — mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500 —	
copper 7440-50-8 iron E440 0.50 μg/g 28.5 37.8 18.9 — iron 7439-89-6 iron E440 50 μg/g 27000 32400 19300 — lead 7439-92-1 iron E440 0.50 μg/g 5.51 g 9.07 g 4.74 g — lithium 7439-93-2 iron E440 g 2.0 μg/g 14.0 g 18.6 g 9.3 g — magnesium 7439-95-4 g E440 g 20 μg/g 10400 g 12300 g 7940 g — manganese 7439-96-5 g E440 g 1.0 μg/g 547 g 672 g 370 g — mercury 7439-97-6 g E510 g 0.0500 g μg/g 0.0528 g <0.0500 g	
iron 7439-89-6 E440 50 μg/g 27000 32400 19300 lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 manganese 7439-96-5 E440 1.0 μg/g 547 672 370 mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500	
lead 7439-92-1 E440 0.50 μg/g 5.51 9.07 4.74 lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 manganese 7439-96-5 E440 1.0 μg/g 547 672 370 mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500	
lithium 7439-93-2 E440 2.0 μg/g 14.0 18.6 9.3 magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 manganese 7439-98-5 E440 1.0 μg/g 547 672 370 mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500	
magnesium 7439-95-4 E440 20 μg/g 10400 12300 7940 — manganese 7439-96-5 E440 1.0 μg/g 547 672 370 — mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500 <0.0500 —	
manganese 7439-96-5 E440 1.0 μg/g 547 672 370 mercury 7439-97-6 E510 0.0500 μg/g 0.0528 <0.0500	
mercury 7439-97-6 E510 0.0500 µg/g 0.0528 <0.0500 <0.0500 —	
7	
molybdenum 7439-98-7 E440 0.10 μg/g 0.70 0.94 0.47	
nickel 7440-02-0 E440 0.50 μg/g 43.7 51.9 34.5	
phosphorus 7723-14-0 E440 50 μg/g 621 755 509	
potassium 7440-09-7 E440 100 μg/g 980 1330 620	
selenium 7782-49-2 E440 0.20 µg/g 0.29 0.44 <0.20	
silver 7440-22-4 E440 0.10 μg/g <0.10 0.13 <0.10	
sodium 7440-23-5 E440 50 μg/g 307 375 286	
strontium 7440-24-6 E440 0.50 μg/g 53.9 59.5 34.2	
sulfur 7704-34-9 E440 1000 μg/g <1000 <1000 <1000	
thallium 7440-28-0 E440 0.050 μg/g 0.080 0.109 0.053	
tin 7440-31-5 E440 2.0 μg/g <2.0 <2.0 <2.0	

 Page
 : 10 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Soil			CI	lient sample ID	20-MW3@0.3m	20-MW3@0.6m	20-DUP1-MM		
(Matrix: Soil/Solid)									
			Client sampli	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020		
Analyte	CAS Number M	Method	LOR	Unit	VA20C3415-012	VA20C3415-013	VA20C3415-017		
					Result	Result	Result	_	
Metals									
titanium	7440-32-6 E	440	1.0	µg/g	933	1130	760		
tungsten	7440-33-7 E	440	0.50	µg/g	< 0.50	<0.50	<0.50		
uranium	7440-81-1 E	440	0.050	µg/g	0.701	0.866	0.395		
vanadium	7440-82-2 E	440	0.20	µg/g	50.4	63.2	42.8		
zinc	7440-66-6 E	440	2.0	µg/g	62.2	79.9	45.1		
zirconium	7440-87-7 E	E440	1.0	µg/g	8.0	8.8	5.9		
Volatile Organic Compounds									
chlorobenzene	108-90-7 E	611C	0.050	µg/g	<0.050		<0.050		
chloromethane	74-87-3 E	611C	0.050	µg/g	< 0.050	_	<0.050		
dichlorobenzene, 1,2-	95-50-1 E	611C	0.050	µg/g	<0.050	-	<0.050		
dichlorobenzene, 1,3-	541-73-1 E		0.050	µg/g	<0.050	_	<0.050		
dichlorobenzene, 1,4-		611C	0.050	µg/g	<0.050	_	<0.050		
dichloropropane, 1,2-	78-87-5 E	611C	0.050	µg/g	<0.050		<0.050		
dichloropropylene, cis+trans-1,3-	542-75-8 E	611C	0.075	µg/g	<0.075	_	<0.075		
dichloropropylene, cis-1,3-	10061-01-5 E	611C	0.050	µg/g	<0.050	-	<0.050		
tetrachloroethane, 1,1,1,2-	630-20-6 E	611C	0.050	µg/g	<0.050		<0.050		
tetrachloroethane, 1,1,2,2-	79-34-5 E	611C	0.050	µg/g	< 0.050	_	<0.050		
trichloroethane, 1,1,2-	79-00-5 E	611C	0.050	µg/g	<0.050		<0.050		
trichlorofluoromethane	75-89-4 E	611C	0.050	µg/g	<0.050	_	<0.050		
Volatile Organic Compounds [Drycleaning]									
carbon tetrachloride	56-23-5 E	611C	0.050	h8/8	<0.050		<0.050		
chloroethane	75-00-3 E	611C	0.050	µg/g	<0.050		<0.050		
dichloroethane, 1,1-	75-34-3 E	611C	0.050	µg/g	<0.050	-	<0.050		
dichloroethane, 1,2-	107-08-2 E	611C	0.050	µg/g	<0.050	-	<0.050		
dichloroethylene, 1,1-	75-35-4 E	611C	0.050	µg/g	<0.050		<0.050		
dichloroethylene, cis-1,2-	156-59-4 E	611C	0.050	µg/g	<0.050		<0.050		
dichloroethylene, trans-1,2-	156-60-5 E	611C	0.050	µg/g	<0.050	-	<0.050		
dichloromethane		611C	0.050	µg/g	<0.050		<0.050		
dichloropropylene, trans-1,3-	10061-02-6 E	611C	0.050	µg/g	<0.050	_	<0.050		
tetrachloroethylene	127-18-4 E	611C	0.050	µg/g	<0.050	_	<0.050		
trichloroethane, 1,1,1-	71-55-6 E	611C	0.050	µg/g	<0.050		<0.050		
trichloroethylene	79-01-6 E	611C	0.010	µg/g	<0.010	_	<0.010		
1			I	1 1					

 Page
 : 11 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	20-MW3@0.3m	20-MW3@0.6m	20-DUP1-MM		
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020		
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-012	VA20C3415-013	VA20C3415-017		
					Result	Result	Result	_	
Volatile Organic Compounds [Drycleaning]		100							
vinyl chloride	75-01-4	E611C	0.050	µg/g	<0.050		<0.050		
Volatile Organic Compounds [Fuels]									
benzene	71-43-2	E611C	0.0050	ha/a	<0.0050		<0.0050		
ethylbenzene	100-41-4	E611C	0.015	h8/8	<0.015		<0.015		
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.050	ha\a	<0.050		< 0.050		
styrene	100-42-5	E611C	0.050	h8/8	<0.050		<0.050		
toluene	108-88-3	E611C	0.050	µg/g	<0.050		<0.050		
xylene, m+p-	179601-23-1	E611C	0.050	µg/g	<0.050		<0.050		
xylene, o-	95-47-6	E611C	0.050	h8/8	<0.050		<0.050		
xylenes, total	1330-20-7	E611C	0.075	µg/g	<0.075		<0.075		
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611C	0.050	%	98.7		104		
difluorobenzene, 1,4-	540-36-3	E611C	0.050	%	89.3		91.8		
Hydrocarbons									
chromatogram to baseline at nC50		E601.SG	-	h8/8	Yes		Yes		
EPH (C10-C19)		E601A	200	h8/8	<200		<200		
EPH (C19-C32)		E601A	200	h8/8	<200	-	<200		
F1-BTEX		EC580	5.0	mg/kg	<5.0		<5.0		
F2 (C10-C16)		E601.SG	25	h8/8	<25		<25		
F3 (C16-C34)		E601.SG	50	µg/g	66	-	54		
F4 (C34-C50)		E601.SG	50	µg/g	<50		50		
TEH (C10-C50)		E601.SG	75	h8/8	<75	-	104		
TEH (C16-C50)		E601.SG	75	µg/g	<75	_	104		
VHs (C6-C10)		E581.VH+F1	10	µg/g	<10		<10		
HEPHs	_	EC600A	200	ha/a	<200	-	<200		
LEPHs		EC600A	200	µg/g	<200		<200		
VPHs		EC580A	10	h8/8	<10	-	<10		
Hydrocarbons Surrogates		10111							
bromobenzotrifluoride, 2- (EPH surr)	392-83-6	E601A	5.0	%	106	-	102		
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6		10	%	93.8	_	92.5		
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	108		107		
Polycyclic Aromatic Hydrocarbons									

 Page
 : 12 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Soil			G	lient sample ID	20-MW3@0.3m	20-MW3@0.6m	20-DUP1-MM		
(Matrix: Soil/Solid)									
			Client sampli	ing date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020		
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-012	VA20C3415-013	VA20C3415-017		
					Result	Result	Result	_	
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A-L	0.0050	µg/g	<0.0050		<0.0050		
acenaphthylene	208-96-8	E641A-L	0.0050	µg/g	<0.0050		0.0118		
acridine	260-94-6	E641A-L	0.010	µg/g	<0.010		<0.010		
anthracene	120-12-7	E641A-L	0.0040	µg/g	<0.0040		0.0087		
benz(a)anthracene	56-55-3	E641A-L	0.010	µg/g	<0.010		0.012		
benzo(a)pyrene	50-32-8	E641A-L	0.010	µg/g	<0.010		0.012		
benzo(b+j)fluoranthene		E641A-L	0.010	µg/g	<0.010	_	0.015		
benzo(b+j+k)fluoranthene		E641A-L	0.015	µg/g	<0.015		0.015		
benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	µg/g	<0.010		<0.010		
benzo(k)fluoranthene	207-08-9		0.010	µg/g	<0.010		<0.010		
chrysene	218-01-9	E641A-L	0.010	µg/g	<0.010		0.012		
dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	µg/g	<0.0050		<0.0050		
fluoranthene		E641A-L	0.010	µg/g	0.014	_	0.028		
fluorene	86-73-7	E641A-L	0.010	µg/g	<0.010		<0.010		
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	µg/g	<0.010	-	<0.010		
methylnaphthalene, 1-		E641A-L	0.010	µg/g	<0.010		<0.010		
methylnaphthalene, 2-	91-57-6	E641A-L	0.010	µg/g	<0.010		<0.010		
naphthalene	91-20-3	E641A-L	0.010	µg/g	<0.010		<0.010		
phenanthrene	85-01-8	E641A-L	0.010	µg/g	0.014		0.016		
pyrene	129-00-0		0.010	ha\a	<0.010		0.019		
quinoline	6027-02-7	E641A-L	0.010	ha\a	<0.010	_	<0.010		
B(a)P total potency equivalents [B(a)P TPE]	_	E641A-L	0.020	ha\a	<0.020		<0.020		
IACR (CCME)	_	E641A-L	0.15	-	<0.15	_	0.21		
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A-L	0.010	%	102		113		
chrysene-d12	1719-03-5		0.010	%	119		114		
naphthalene-d8	1146-65-2	E641A-L	0.010	%	110		91.0		
phenanthrene-d10	1517-22-2		0.010	96	123		110		
Volatile Organic Compounds [THMs]									
bromodichloromethane	75-27-4	E611C	0.050	µg/g	<0.050		<0.050		
bromoform	75-25-2	E611C	0.050	µg/g	<0.050		<0.050		
chloroform	67-66-3	E611C	0.050	µg/g	<0.050		<0.050		
I .		I	I			I		I	

 Page
 : 13 of 13

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Soil			Cl	ient sample ID	20-MW3@0.3m	20-MW3@0.6m	20-DUP1-MM		
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	15-Dec-2020	15-Dec-2020	15-Dec-2020		
Analyte	CAS Number	Method	LOR	Unit	VA20C3415-012	VA20C3415-013	VA20C3415-017		
					Result	Result	Result	_	
Volatile Organic Compounds [THMs]									
dibromochloromethane	124-48-1	E611C	0.050	h8/8	<0.050		<0.050		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

: VA20C3415 Work Order : 1 of 12 Page

WSP Canada Inc. Laboratory Client : Vancouver - Environmental

Contact : Marina Makovetski Account Manager : Carla Fuginski Address : Unit 100 - 20339 96 Avenue Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

: 23-Dec-2020 13:39

Langley BC Canada V1M 2L1 : 604-353-7077 Telephone : +1 604 253 4188

Issue Date

Telephone : 15-Dec-2020 15:30 Project : 20M-00758-00 Date Samples Received

PO

C-O-C number : 17-865484 Sampler MM/RC Site

Quote number No. of samples received : 17 No. of samples analysed :8

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

. No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

 Page
 : 3 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Soil/Solid					E	/aluation: 🗴 =	Holding time exce	edance ; v	= Within	Holding II
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	iis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
20-MW3@0.3m	E601A	15-Dec-2020	20-Dec-2020	14	5 days	*	21-Dec-2020	40 days	0 days	1
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
20-DUP1-MM	E601A	15-Dec-2020	20-Dec-2020	14	5 days	*	22-Dec-2020	40 days	1 days	1
				days						
-lydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E601A	15-Dec-2020	20-Dec-2020	14	5 days	*	22-Dec-2020	40 days	1 days	1
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Glass soil jar/Teflon lined cap	F0044	45 0 0000	00 D 0000		- ·		00.0	40.4		
20-MW2@0.3m	E601A	15-Dec-2020	20-Dec-2020	14	5 days	*	22-Dec-2020	40 days	1 days	1
				days						
Hydrocarbons : CCME PHC - F2-F4 by GC-FID										
Glass soil jar/Teflon lined cap 20-MW3@0.3m	E601.SG	15-Dec-2020	20-Dec-2020	14	5 days	1	21-Dec-2020	40 days	O dove	1
20-WW3@0.5III	2001.30	15-Dec-2020	20-Dec-2020	days	5 days	*	21-060-2020	40 days	u days	*
				uays						
Hydrocarbons : CCME PHC - F2-F4 by GC-FID										
Glass soil jar/Teflon lined cap 20-DUP1-MM	E601.SG	15-Dec-2020	20-Dec-2020	14	5 days	1	22-Dec-2020	40 days	1 days	1
20 001 1 11111	2001.00		25-560-2020	days	Juays	,	22-000-2020	.o days	. uays	•
A STATE OF THE STA				uays						
Hydrocarbons : CCME PHC - F2-F4 by GC-FID										
Glass soil jar/Teflon lined cap 20-MW1@1.2m	E601.SG	15-Dec-2020	20-Dec-2020	14	5 days	1	22-Dec-2020	40 days	1 days	1
EA-18114 1 1 2 1 2 1 11	2001.00	.0 500 2020	23 000 2020	days	Junja	,		.o days	. uu,s	-
				days						

 Page
 : 4 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons: CCME PHC - F2-F4 by GC-FID										
Glass soil jar/Teflon lined cap 20-MW2@0.3m	E601.SG	15-Dec-2020	20-Dec-2020	14 days	5 days	~	22-Dec-2020	40 days	1 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial 20-DUP1-MM	E581.VH+F1	15-Dec-2020	17-Dec-2020	40 days	2 days	~	18-Dec-2020	37 days	0 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial 20-MW1@1.2m	E581.VH+F1	15-Dec-2020	17-Dec-2020	40 days	2 days	~	18-Dec-2020	37 days	0 days	✓
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass soil methanol vial 20-MW3@0.3m	E581.VH+F1	15-Dec-2020	17-Dec-2020	40 days	2 days	*	18-Dec-2020	37 days	0 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 20-DUP1-MM	E510	15-Dec-2020	22-Dec-2020	28 days	7 days	~	23-Dec-2020	20 days	0 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 20-MW1@0.3m	E510	15-Dec-2020	22-Dec-2020	28 days	7 days	~	23-Dec-2020	20 days	0 days	*
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 20-MW1@0.6m	E510	15-Dec-2020	22-Dec-2020	28 days	7 days	*	23-Dec-2020	20 days	0 days	~
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 20-MW1@1.2m	E510	15-Dec-2020	22-Dec-2020	28 days	7 days	~	23-Dec-2020	20 days	0 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 20-MW2@0.3m	E510	15-Dec-2020	22-Dec-2020	28 days	7 days	*	23-Dec-2020	20 days	0 days	1

 Page
 : 5 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Matrix: Soll/Solid					E	aluation. * -	Holding time exce	edance,	- vvitriiri	r norung rin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
20-MW2@0.6m	E510	15-Dec-2020	22-Dec-2020	28	7 days	✓	23-Dec-2020	20 days	0 days	1
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
20-MW3@0.3m	E510	15-Dec-2020	22-Dec-2020	28	7 days	✓	23-Dec-2020	20 days	0 days	1
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
20-MW3@0.8m	E510	15-Dec-2020	22-Dec-2020	28	7 days	✓	23-Dec-2020	20 days	0 days	✓
				days						
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-DUP1-MM	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	✓
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW1@0.3m	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	1
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW1@0.6m	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	1
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	1
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW2@0.3m	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	1
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
Glass soil jar/Teflon lined cap 20-MW2@0.6m	E440	15-Dec-2020	22-Dec-2020	180	7 days	✓	22-Dec-2020	172	0 days	1

 Page
 : 6 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

 Matrix: Soil/Solid
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW3@0.3m	E440	15-Dec-2020	22-Dec-2020	180	7 days	~	22-Dec-2020	172	0 days	1
				days				days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
20-MW3@0.6m	E440	15-Dec-2020	22-Dec-2020	180	7 days	~	22-Dec-2020	172	0 days	1
				days				days		
Non-Chlorinated Phenolics : Phenolics (Western Canada List, No Nitro-Phenols) I	by GC-MS									
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E651A	15-Dec-2020	20-Dec-2020				22-Dec-2020			
Phenolics : Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS										
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E651A	15-Dec-2020	20-Dec-2020	14	5 days	✓	22-Dec-2020	40 days	1 days	✓
				days						
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
20-DUP1-MM	E144	15-Dec-2020					20-Dec-2020			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E144	15-Dec-2020					20-Dec-2020			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
20-MW2@0.3m	E144	15-Dec-2020					20-Dec-2020			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
20-MW3@0.3m	E144	15-Dec-2020					20-Dec-2020			
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-DUP1-MM	E108	15-Dec-2020	22-Dec-2020	30	7 days	✓	22-Dec-2020	22 days	0 days	✓
				days						

 Page
 : 7 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analyte Group	Method	Sampling Date	Extr	action / Pre	paration			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 20-MW1@0.3m	E108	15-Dec-2020	22-Dec-2020	30	7 days	4	22-Dec-2020	22 days	0 days	1
25 1111 (1825.511)			LL DCG LGLG	days	, augs		ZE DCG ZGZG	LL duys	o aays	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW1@0.6m	E108	15-Dec-2020	22-Dec-2020	30 days	7 days	4	22-Dec-2020	22 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW1@1.2m	E108	15-Dec-2020	22-Dec-2020	30 days	7 days	4	22-Dec-2020	22 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW2@0.3m	E108	15-Dec-2020	22-Dec-2020	30 days	7 days	✓	22-Dec-2020	22 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW2@0.6m	E108	15-Dec-2020	22-Dec-2020	30 days	7 days	*	22-Dec-2020	22 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW3@0.3m	E108	15-Dec-2020	22-Dec-2020	30 days	7 days	✓	22-Dec-2020	22 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
20-MW3@0.6m	E108	15-Dec-2020	22-Dec-2020	30	7 days	✓	22-Dec-2020	22 days	0 days	✓
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/Teflon lined cap	E8444 !	45 Dec 2020	00 D 0000				04 D - 0005	40.4		
20-MW3@0.3m	E641A-L	15-Dec-2020	20-Dec-2020	14 days	5 days	~	21-Dec-2020	40 days	U days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS (Low Level CCME)										
Glass soil jar/Teflon lined cap 20-DUP1-MM	E641A-L	15-Dec-2020	20-Dec-2020	14	5 days	~	22-Dec-2020	40 days	1 days	1
				days						

 Page
 : 8 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Polycyclic Aromatic Hydrocarbons: PAHs by Hex:Ace GC-MS (Low Level CCME) Glass soil jar/Teflon lined cap 20-MW1@1.2m E641A-L 15-Dec-2020 ✓ 20-Dec-2020 22-Dec-2020 40 days 1 days 14 5 days days Polycyclic Aromatic Hydrocarbons: PAHs by Hex:Ace GC-MS (Low Level CCME) Glass soil jar/Teflon lined cap 1 20-MW2@0.3m E641A-L 15-Dec-2020 20-Dec-2020 5 days 22-Dec-2020 40 days 1 days 14 days Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 17-Dec-2020 18-Dec-2020 20-DUP1-MM Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 20-MW1@1.2m 17-Dec-2020 18-Dec-2020 Volatile Organic Compounds: VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 20-MW3@0.3m 17-Dec-2020 18-Dec-2020 Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 17-Dec-2020 18-Dec-2020 20-DUP1-MM Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 17-Dec-2020 18-Dec-2020 20-MW1@1.2m Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 20-MW3@0.3m 17-Dec-2020 18-Dec-2020 Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS Glass soil methanol vial E611C 15-Dec-2020 1 20-DUP1-MM 17-Dec-2020 18-Dec-2020 37 days 0 days 1 40 2 days days

 Page
 : 9 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; √ = Within Holding Time

attix. SolirSolid						eroeuch.	moluling time exce	courrec, .	******	riolaling
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
/olatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS										
Glass soil methanol vial										
20-MW1@1.2m	E611C	15-Dec-2020	17-Dec-2020	40	2 days	✓	18-Dec-2020	37 days	0 days	✓
				days						
olatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS										
Glass soil methanol vial										
20-MW3@0.3m	E611C	15-Dec-2020	17-Dec-2020	40	2 days	✓	18-Dec-2020	37 days	0 days	1
				days						
/olatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass soil methanol vial										
20-DUP1-MM	E611C	15-Dec-2020	17-Dec-2020				18-Dec-2020			
olatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass soil methanol vial										
20-MW1@1.2m	E611C	15-Dec-2020	17-Dec-2020				18-Dec-2020			
olatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass soil methanol vial										
20-MW3@0.3m	E611C	15-Dec-2020	17-Dec-2020				18-Dec-2020			

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

 Page
 : 10 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
BC PHC - EPH by GC-FID	E601A	133682	1	15	6.6	5.0	1
CCME PHC - F2-F4 by GC-FID	E601.SG	133683	1	4	25.0	5.0	1
Mercury in Soil/Solid by CVAAS	E510	133686	1	9	11.1	5.0	1
Metals in Soil/Solid by CRC ICPMS	E440	133687	1	9	11.1	5.0	1
Moisture Content by Gravimetry	E144	133688	1	15	6.6	5.0	1
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	133681	1	15	6.6	5.0	1
pH by Meter (1:2 Soil:Water Extraction)	E108	133685	1	15	6.6	5.0	1
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E651A	133684	1	7	14.2	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	132108	1	14	7.1	5.0	1
VOCs (BC List) by Headspace GC-MS	E611C	132110	1	13	7.6	5.0	1
Laboratory Control Samples (LCS)							
BC PHC - EPH by GC-FID	E601A	133682	2	15	13.3	10.0	1
CCME PHC - F2-F4 by GC-FID	E601.SG	133683	2	4	50.0	10.0	√
Mercury in Soil/Solid by CVAAS	E510	133686	2	9	22.2	10.0	1
Metals in Soil/Solid by CRC ICPMS	E440	133687	2	9	22.2	10.0	1
Moisture Content by Gravimetry	E144	133688	1	15	6.6	5.0	1
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	133681	2	15	13.3	10.0	1
pH by Meter (1:2 Soil:Water Extraction)	E108	133685	1	15	6.6	5.0	/
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E851A	133684	1	7	14.2	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	132108	1	14	7.1	5.0	1
VOCs (BC List) by Headspace GC-MS	E611C	132110	1	13	7.6	5.0	1
Method Blanks (MB)							
BC PHC - EPH by GC-FID	E601A	133682	1	15	6.6	5.0	1
CCME PHC - F2-F4 by GC-FID	E601.SG	133683	1	4	25.0	5.0	1
Mercury in Soil/Solid by CVAAS	E510	133686	1	9	11.1	5.0	1
Metals in Soil/Solid by CRC ICPMS	E440	133687	1	9	11.1	5.0	1
Moisture Content by Gravimetry	E144	133688	1	15	6.6	5.0	1
PAHs by Hex:Ace GC-MS (Low Level CCME)	E841A-L	133681	1	15	6.6	5.0	1
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E651A	133684	1	7	14.2	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	132108	1	14	7.1	5.0	1
VOCs (BC List) by Headspace GC-MS	E611C	132110	1	13	7.6	5.0	1
Matrix Spikes (MS)							
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E851A	133684	1	7	14.2	5.0	1
VH and F1 by Headspace GC-FID	E581.VH+F1	132108	1	14	7.1	5.0	· /
VOCs (BC List) by Headspace GC-MS	E611C	132110	1	13	7.6	5.0	1

 Page
 : 11 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}$ C), and is carried out in accordance with
	Vancouver - Environmental			procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure
	CHAIGHINEHIA			water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH
				probe.
Moisture Content by Gravimetry	E144	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample,
	Vancouver -			expressed as a percentage.
M	Environmental	0.700.51	ED 1 0000D (1)	
Metals in Soil/Solid by CRC ICPMS	E440	Soil/Solid	EPA 6020B (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
	Vancouver -			This method is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only
	Environmental			partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Ti, V, W, and Zr. Volatile forms of
				sulfur (including sulfide) may not be captured, as they may be lost during sampling.
				storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510	Soil/Solid	EPA 200.2/1631	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl,
			Appendix (mod)	followed by CVAAS analysis.
	Vancouver -			
VIII and Ed by Unadanase CO ED	Environmental	0-3/0-13		
VH and F1 by Headspace GC-FID	E581.VH+F1	Soil/Solid	BC MOE Lab Manual / CCME PHC in Soil - Tier	
	Vancouver -		1 (mod)	autosampler, causing VOCs to partition between the aqueous phase and the
CCME PHC - F2-F4 by GC-FID	Environmental	Soil/Solid	COME DUO :- C-3 T:	headspace in accordance with Henry's law.
COME FRO - F2-F4 by GO-FID	E601.SG	Soli/Solid	CCME PHC in Soil - Tier 1	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME Fractions 2-4 (F2-F4).
	Vancouver -			
BC PHC - EPH by GC-FID	Environmental E601A	Soil/Solid	BC MOE Lab Manual	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
BOTHO-EFH by GO-FID	EOUTA	Soli/Solid	(EPH in Solids by	Extractable Fetitieum nyulocarbons (EFF) are analyzed by GOFFID.
	Vancouver -		GC/FID) (mod)	
	Environmental		, ,	
VOCs (BC List) by Headspace GC-MS	E611C	Soil/Solid	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	Vancouver -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
PAHs by Hex:Ace GC-MS (Low Level CCME)	E641A-L	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and
	Vancouver -			B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME
	Environmental			PAH Soil Quality Guidelines fact sheet (2010) or ABT1.

 Page
 : 12 of 12

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Method / Lab	Matrix	Method Reference	Method Descriptions
E651A	Soil/Solid	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
nvironmental			
EC580	Soil/Solid	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C8-C10) minus benzene, toluene,
		1	ethylbenzene and xylenes (BTEX).
EC580A	Soil/Solid		Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VH-BTEX = Volatile
			Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
		Solids) (mod)	styrene.
	C-3/C-64	201021111	
ECOUUA	SOII/SOIIG		Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum
Vanagunar		,	Hydrocarbons (HEPH) are calculated as follows: LEPH = Extractable Petroleum
		(mod)	Hydrocarbons (EPH10-19) minus Naphthalene and Phenanthrene; HEPH = Extractable Petroleum Hydrocarbons (EPH19-32) minus Benz(a)anthracene.
JIVIIOIIIIEIIIAI			Benzo(b+j+k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene,
			Indeno(1,2,3-cd)pyrene, and Pyrene.
Method / Lab	Matrix	Method Reference	Method Descriptions
EP108	Soil/Solid	BC WLAP METHOD:	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample
		PH, ELECTROMETRIC,	with deionized/distilled water at a 1:2 ratio of sediment to water.
		SOIL	
EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
			This method is intended to liberate metals that may be environmentally available.
	0.700.51	ED4 50054 ()	
EP581	Soil/Solid	EPA 5035A (mod)	VOCs in samples are extracted with methanol. Extracts are then prepared in headspace
.,			vials and are heated and agitated on the headspace autosampler, causing VOCs to
			partition between the aqueous phase and the headspace in accordance with Henry's
	Cail/Calid	COME DUO :- C-3 T:	law.
EP601	2011/20110		Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Vancouver -		1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
varicouver -			
nvironmental			
Environmental EP851	Soil/Solid	EPA 3570 (mod)	Samples are subsampled and Phanolins are extracted with solvents using a machanical
Environmental EP651	Soil/Solid	EPA 3570 (mod)	Samples are subsampled and Phenolics are extracted with solvents using a mechanical shaking extractor
	Soil/Solid	EPA 3570 (mod)	Samples are subsampled and Phenolics are extracted with solvents using a mechanical shaking extractor.
	Vancouver - Environmental EC580A Vancouver - Environmental EC600A Vancouver - Environmental	Environmental EC580 Soil/Solid Vancouver - Environmental EC580A Soil/Solid Vancouver - Environmental EC600A Soil/Solid Vancouver - Environmental Method / Lab Matrix EP108 Soil/Solid Vancouver - Environmental EP440 Soil/Solid Vancouver - Environmental EP581 Soil/Solid Vancouver - Environmental EP581 Soil/Solid	Environmental EC580 Soil/Solid CCME PHC in Soil - Tier 1 Vancouver - Environmental EC580A Soil/Solid BC MOE Lab Manual (VPH in Water and Solids) (mod) Environmental EC600A Soil/Solid BC MOE Lab Manual (LEPH and HEPH) (mod) Method / Lab Matrix Method Reference EP108 Soil/Solid BC WLAP METHOD: PH, ELECTROMETRIC, SOIL Environmental EP440 Soil/Solid EPA 200.2 (mod) Vancouver - Environmental EP581 Soil/Solid EPA 5035A (mod) Vancouver - Environmental EP581 Soil/Solid EPA 5035A (mod)

QUALITY CONTROL REPORT

Work Order :VA20C3415 Page : 1 of 20

Client :WSP Canada Inc. Contact : Marina Makovetski

Laboratory : Vancouver - Environmental

: Unit 100 - 20339 96 Avenue

Account Manager : Carla Fuginski Address :8081 Lougheed Highway

Langley BC Canada V1M 2L1

Burnaby, British Columbia Canada V5A 1W9

Telephone :604-353-7077 Telephone :+1 604 253 4188

Project :20M-00758-00 PO

Date Samples Received :15-Dec-2020 15:30

C-O-C number : 17-865484 Sampler : MM/RC

Date Analysis Commenced ·17-Dec-2020 :23-Dec-2020 13:39 Issue Date

Site Quote number

No. of samples received : 17

No. of samples analysed . 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia

 Page
 : 2 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ient sample ID i: 133685) ionymous i: 133688) ionymous olics (QC Lot: 133684) ionymous	Analyte pH (1:2 soil:water) moisture dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3- methylphenol, 4-	CAS Number 105-87-9 95-48-7	Method E108 E144 E851A	0.10 0.25	Unit pH units	Original Result 6.16	Duplicate Result 6.14	RPD(%) or Difference 0.325%	Duplicate Limits	Qualifier
i: 133688) conymous olics (QC Lot: 133684)	moisture dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3-	 105-67-9 95-48-7	E144							
t: 133688) conymous olics (QC Lot: 133684)	moisture dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3-	 105-67-9 95-48-7	E144							-
onymous lics (QC Lot: 133684)	dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3-	105-67-9 95-48-7		0.25	%	7.93	9.02	42.09/		
lics (QC Lot: 133684)	dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3-	105-67-9 95-48-7		0.25	%	7.93	9.02	42 09/		
•	dimethylphenol, 2,4- methylphenol, 2- methylphenol, 3-	95-48-7	E651A				U.UE	12.8%	20%	
ionymous	methylphenol, 2- methylphenol, 3-	95-48-7	E651A							
	methylphenol, 3-			0.020	mg/kg	<0.020	0.022	0.002	Diff <2x LOR	-
	**		E651A	0.020	mg/kg	0.033	0.045	0.012	Diff <2x LOR	
	methylphenol. 4-	108-39-4	E651A	0.020	mg/kg	0.040	0.052	0.011	Diff <2x LOR	
		108-44-5	E651A	0.020	mg/kg	0.056	0.052	0.004	Diff <2x LOR	
	phenol	108-95-2	E651A	0.020	mg/kg	0.047	0.056	0.009	Diff <2x LOR	
5)										
onymous	mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	0	Diff <2x LOR	
n										
onymous	aluminum	7429-90-5	E440	50	mg/kg	5200	4260	19.8%	40%	
	antimony	7440-36-0	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
	arsenic	7440-38-2	E440	0.10	mg/kg	0.43	0.36	0.08	Diff <2x LOR	
	barium	7440-39-3	E440	0.50	mg/kg	36.1	34.8	3.55%	40%	
	beryllium	7440-41-7	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
	bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
	boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
	cadmium	7440-43-9	E440	0.020	mg/kg	<0.020	0.022	0.002	Diff <2x LOR	
	calcium	7440-70-2	E440	50	mg/kg	2700	2270	17.2%	30%	
	chromium	7440-47-3	E440	0.50	mg/kg	6.52	5.55	16.1%	30%	
	cobalt	7440-48-4	E440	0.10	mg/kg	3.26	2.94	10.2%	30%	
	copper	7440-50-8	E440	0.50	mg/kg	10.4	11.6	11.0%	30%	
	iron	7439-89-6	E440	50	mg/kg	9640	8520	12.4%	30%	_
		7439-92-1	E440	0.50	mg/kg	0.80	0.73	0.07	Diff <2x LOR	
		7439-93-2	E440	2.0		3.1	2.4	0.7	Diff <2x LOR	
	_									
	_									
	· ·			0.50	mg/kg	4.42	3.99	10.2%	30%	
ion		aluminum antimory arsenic barium beryllium bismuth boron cadmium calcium chromium cobalt copper	aluminum 7429-90-5 antimony 7440-36-0 arsenic 7440-38-2 barium 7440-39-3 beryllium 7440-41-7 bismuth 7440-69-9 boron 7440-42-8 cadmium 7440-70-2 chromium 7440-70-2 chromium 7440-48-4 copper 7440-50-8 iron 7439-89-6 lead 7439-92-1 lithium 7439-93-2 magnesium 7439-96-5 molybdenum 7439-98-7	aluminum 7429-90-5 E440 antimony 7440-38-0 E440 arsenic 7440-38-2 E440 barium 7440-41-7 E440 bismuth 7440-69-9 E440 boron 7440-42-8 E440 calcium 7440-70-2 E440 chromium 7440-47-3 E440 cobalt 7440-48-4 E440 copper 7440-50-8 E440 lead 7439-92-1 E440 lithium 7439-93-2 E440 magnesium 7439-98-5 E440 manganese 7439-98-7 E440 molybdenum 7439-98-7 E440	laturinum 7429-90-5 E440 50 antimony 7440-38-0 E440 0.10 arsenic 7440-38-2 E440 0.50 barium 7440-38-3 E440 0.50 beryllium 7440-41-7 E440 0.10 bismuth 7440-89-9 E440 0.20 boron 7440-42-8 E440 5.0 cadmium 7440-43-9 E440 0.020 calcium 7440-47-2 E440 0.50 chromium 7440-47-3 E440 0.50 cobalt 7440-47-3 E440 0.50 cobalt 7440-48-4 E440 0.10 copper 7440-50-8 E440 0.50 iron 7439-89-6 E440 50 60 lead 7439-92-1 E440 0.50 lithium 7439-93-2 E440 2.0 magnesium 7439-95-4 E440 2.0 magnese 7439-96-5 E440 1.0 molybdenum 7439-98-7 E440 1.0 0.10	aluminum 7429-90-5 E440 50 mg/kg antimony 7440-38-0 E440 0.10 mg/kg arsenic 7440-38-2 E440 0.10 mg/kg barium 7440-38-3 E440 0.50 mg/kg beryllium 7440-41-7 E440 0.10 mg/kg bismuth 7440-89-9 E440 0.20 mg/kg boron 7440-42-8 E440 5.0 mg/kg calcium 7440-43-9 E440 0.020 mg/kg calcium 7440-70-2 E440 50 mg/kg chromium 7440-47-3 E440 0.50 mg/kg cobalt 7440-48-4 E440 0.10 mg/kg copper 7440-50-8 E440 0.50 mg/kg iron 7439-89-6 E440 50 mg/kg magnesium 7439-93-2 E440 0.50 mg/kg magnesium 7439-95-4 E440 20 mg/kg magkg molybdenum 7439-96-5 E440 1.0 mg/kg molybdenum 7439-96-7 E440 0.10 mg/kg	Suminum T429-90-5 E440 S0 mg/kg S200	Auminum 7429-90-5 E440 50 mg/kg 5200 4280 antimorry 7440-38-0 E440 0.10 mg/kg <0.10 <0.10 arsenic 7440-38-2 E440 0.10 mg/kg 0.43 0.36 barium 7440-39-3 E440 0.50 mg/kg 30.1 34.8 beryllium 7440-41-7 E440 0.10 mg/kg <0.10 <0.10 calmium 7440-89-9 E440 0.20 mg/kg <0.20 <0.20 boron 7440-42-8 E440 5.0 mg/kg <0.020 0.022 calcium 7440-70-2 E440 5.0 mg/kg 2700 2270 chromium 7440-47-3 E440 0.50 mg/kg 6.52 5.55 cobalt 7440-48-4 E440 0.50 mg/kg 3.28 2.94 copper 7440-50-8 E440 0.50 mg/kg 9840 8520 lead 7439-92-1 E440 0.50 mg/kg 9840 8520 lead 7439-92-1 E440 0.50 mg/kg 0.80 0.73 lithium 7439-93-2 E440 2.0 mg/kg 3.1 2.4 magnesium 7439-98-5 E440 2.0 mg/kg 133 108 molybdenum 7439-98-7 E440 1.0 mg/kg 133 108 molybdenum 7439-98-7 E440 1.0 mg/kg 133 108	Auminum 7429-90-5 E440 50 mg/kg 5200 4280 19.8% antimory 7440-38-0 E440 0.10 mg/kg 40.10 <0.10 0 arsenic 7440-38-2 E440 0.10 mg/kg 0.43 0.36 0.08 barium 7440-39-3 E440 0.50 mg/kg 38.1 34.8 3.55% beryllium 7440-41-7 E440 0.10 mg/kg <0.10 <0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aluminum

 Page
 : 4 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

ub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 13	3687) - continued										
/A20C3271-064	Anonymous	phosphorus	7723-14-0	E440	50	mg/kg	416	440	5.51%	30%	
		potassium	7440-09-7	E440	100	mg/kg	740	670	10.3%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		silver	7440-22-4	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	-
		sodium	7440-23-5	E440	50	mg/kg	377	319	16.7%	40%	-
		strontium	7440-24-6	E440	0.50	mg/kg	31.4	29.3	6.87%	40%	_
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	-
		thallium	7440-28-0	E440	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	-
		titanium	7440-32-6	E440	1.0	mg/kg	545	470	14.8%	40%	_
		tungslen	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	_
		uranium	7440-61-1	E440	0.050	mg/kg	0.164	0.157	0.006	Diff <2x LOR	
		vanadium	7440-62-2	E440	0.20	mg/kg	31.7	27.9	12.8%	30%	_
		zinc	7440-66-6	E440	2.0	mg/kg	24.5	19.7	21.6%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	2.5	2.5	0.002	Diff <2x LOR	
/olatile Organic Co	mpounds (QC Lot: 132	110)									
/A20C3369-001	Anonymous	benzene	71-43-2	E611C	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	_
		bromodichloromethane	75-27-4	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		bromoform	75-25-2	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chloroethane	75-00-3	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chloroform	67-66-3	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chloromethane	74-87-3	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-08-2	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-4	E811C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloroethylene, ds-1,2- dichloroethylene, trans-1,2-	158-80-5	E811C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dichloromethane	75-09-2	E811C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
											_
		dichloropropane, 1,2-	78-87-5	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	-

 Page
 : 5 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

ub-Matrix: Soil/Solid					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
	npounds (QC Lot: 132	110) - continued									
VA20C3369-001	Anonymous	dichloropropylene, cis-1,3-	10061-01-5	E811C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		dichloropropylene, trans-1,3-	10061-02-6	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		ethylbenzene	100-41-4	E611C	0.015	mg/kg	<0.015	<0.015	0	Diff <2x LOR	-
		methyl-tert-butyl ether [MTBE]	1634-04-4	E811C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		styrene	100-42-5	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	-
		tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	-
		tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		tetrachloroethylene	127-18-4	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	-
		toluene	108-88-3	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		trichloroethane, 1,1,2-	79-00-5	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	_
		trichloroethylene	79-01-6	E611C	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		trichlorofluoromethane	75-89-4	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611C	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 132108)										
VA20C3279-009	Anonymous	VHs (C6-C10)	_	E581.VH+F1	10	mg/kg	<10	<10	0	Diff <2x LOR	_
Hydrocarbons (QC	Lot: 133682)										
VA20C3271-064	Anonymous	EPH (C10-C19)	_	E601A	200	mg/kg	<200	<200	0	Diff <2x LOR	I
		EPH (C19-C32)	_	E601A	200	mg/kg	<200	<200	0	Diff <2x LOR	-
lydrocarbons (QC	Lot: 133683)										
VA20C3415-003	20-MW1@1.2m	F2 (C10-C16)	_	E601.SG	25	mg/kg	<25 µg/g	<25	0	Diff <2x LOR	_
		F3 (C16-C34)	_	E601.SG	50	mg/kg	<50 µg/g	<50	0	Diff <2x LOR	
		F4 (C34-C50)		E601.SG	50	mg/kg	<50 µg/g	<50	0	Diff <2x LOR	
olycyclic Aromatic	Hydrocarbons (QC Lo	ot: 133681)									
VA20C3271-064	Anonymous	acenaphthene	83-32-9	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	-
		acenaphthylene	208-96-8	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	-
		acridine	260-94-6	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	-
		anthracene	120-12-7	E641A-L	0.0040	mg/kg	<0.0040	<0.0040	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	_
		benzo(a)pyrene	50-32-8	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		benzo(b+j)fluoranthene	_	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	_
		benzo(g,h,i)perylene	191-24-2	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	_
		June							_		I

 Page
 : 6 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (DU	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	Hydrocarbons (QC Lot	: 133681) - continued									
VA20C3271-064	Anonymous	chrysene	218-01-9	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A-L	0.0050	mg/kg	<0.0050	<0.0050	0	Diff <2x LOR	
		fluoranthene	206-44-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		fluorene	86-73-7	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	-
		methylnaphthalene, 1-	90-12-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	-
		methylnaphthalene, 2-	91-57-6	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	-
		naphthalene	91-20-3	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		phenanthrene	85-01-8	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		pyrene	129-00-0	E641A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	
		quinoline	6027-02-7	E841A-L	0.010	mg/kg	<0.010	<0.010	0	Diff <2x LOR	-
Phenolics (QC Lot:	133684)										
VA20C3384-001	Anonymous	chlorophenol, 2-	95-57-8	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		chlorophenol, 3-	108-43-0	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	-
		chlarophenol, 4-	106-48-9	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		dichlorophenol, 2,3-	576-24-9	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	-
		dichlorophenol, 2,4- + 2,5-	_	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		dichlorophenol, 2,6-	87-65-0	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		dichlorophenol, 3,4-	95-77-2	E651A	0.035	mg/kg	<0.035	<0.020	0.015	Diff <2x LOR	
		dichlorophenol, 3,5-	591-35-5	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		methylphenol, 4-chloro-3-	59-50-7	E651A	0.020	mg/kg	<0.020	0.036	0.016	Diff <2x LOR	
		pentachlorophenol [PCP]	87-86-5	E651A	0.020	mg/kg	0.094	0.103	9.38%	50%	
		tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	-
		tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	-
		tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.030	mg/kg	<0.030	0.029	0.0009	Diff <2x LOR	-
		trichlorophenol, 2,3,4-	15950-66-0	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	_
		trichlorophenol, 2,3,5-	933-78-8	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		trichlorophenol, 2,3,6-	933-75-5	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		trichlorophenol, 2,4,5-	95-95-4	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		trichlorophenol, 2,4,8-	88-06-2	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		trichlorophenol, 3,4,5-	609-19-8	E651A	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	

 Page
 : 7 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

4t-t-	CAS Number	Method	LOR	Unit	Dr4	Qualifier
Analyte Physical Tests (QCLot: 133688)	UND HUMBER	THE SECOND SECON	Lon	UIII.	Result	Quantier
moisture		E144	0.25	%	<0.25	_
			5.25		-51250	
Non-Chlorinated Phenolics (QCLot: 13 dimethylphenol, 2,4-	33664) 105-67-9	F651A	0.02	mg/kg	<0.020	_
methylphenol, 2-	95-48-7		0.02	mg/kg	<0.020	
1	108-39-4		0.02	mg/kg	<0.020	
methylphenol, 3-	108-44-5		0.02		<0.020	
methylphenol, 4-				mg/kg		
phenol	108-95-2	E001A	0.02	mg/kg	<0.020	-
Metals (QCLot: 133686)	7400.07.0	5540	0.005		-0.0050	
mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Metals (QCLot: 133687)	7400.00	5440			-50	
aluminum	7429-90-5		50	mg/kg	<50	
antimony	7440-36-0		0.1	mg/kg	<0.10	_
arsenic	7440-38-2		0.1	mg/kg	<0.10	_
barium	7440-39-3	E440	0.5	mg/kg	<0.50	-
beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
boron	7440-42-8	E440	5	mg/kg	<5.0	-
cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	-
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
copper	7440-50-8	E440	0.5	mg/kg	<0.50	
iron	7439-89-6	E440	50	mg/kg	<50	
lead	7439-92-1	E440	0.5	mg/kg	<0.50	_
lithium	7439-93-2	E440	2	mg/kg	<2.0	_
magnesium	7439-95-4	E440	20	mg/kg	<20	
manganese	7439-96-5	E440	1	mg/kg	<1.0	_
molybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
nickel	7440-02-0	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	50	mg/kg	<50	
potassium	7440-09-7	E440	100	mg/kg	<100	
selenium	7782-49-2	E440	0.2	mg/kg	<0.20	
silver	7440-22-4	E440	0.1	mg/kg	<0.10	
I		l	I		l	l

 Page
 : 8 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 133687) - continued						
sodium	7440-23-5	E440	50	mg/kg	<50	_
strontium	7440-24-6	E440	0.5	mg/kg	<0.50	_
sulfur	7704-34-9	E440	1000	mg/kg	<1000	-
hallium	7440-28-0	E440	0.05	mg/kg	<0.050	
in	7440-31-5	E440	2	mg/kg	<2.0	
itanium	7440-32-6	E440	1	mg/kg	<1.0	
ungsten	7440-33-7	E440	0.5	mg/kg	<0.50	_
uranium	7440-61-1	E440	0.05	mg/kg	<0.050	_
vanadium	7440-62-2	E440	0.2	mg/kg	<0.20	
zinc	7440-66-6	E440	2	mg/kg	<2.0	
zireonium	7440-67-7	E440	1	mg/kg	<1.0	_
Volatile Organic Compounds (QCLot:	132110)					
benzene	71-43-2	E611C	0.005	mg/kg	<0.0050	_
promodichloromethane	75-27-4	E611C	0.05	mg/kg	<0.050	_
promoform	75-25-2	E611C	0.05	mg/kg	<0.050	_
carbon tetrachloride	56-23-5	E611C	0.05	mg/kg	<0.050	
thlorobenzene	108-90-7	E611C	0.05	mg/kg	<0.050	
chloroethane	75-00-3	E611C	0.05	mg/kg	<0.050	
chloroform	67-66-3	E611C	0.05	mg/kg	<0.050	
chloromethane	74-87-3	E811C	0.05	mg/kg	<0.050	
dibromochloromethane	12 4 4 8-1	E611C	0.05	mg/kg	<0.050	
dichlorobenzene, 1,2-	95-50-1	E811C	0.05	mg/kg	<0.050	
fichlorobenzene, 1,3-	541-73-1	E811C	0.05	mg/kg	<0.050	
fichlorobenzene, 1,4-	106-46-7	E611C	0.05	mg/kg	<0.050	
dichloroethane, 1,1-	75-34-3	E811C	0.05	mg/kg	<0.050	
dichloroethane, 1,2-	107-08-2	E811C	0.05	mg/kg	<0.050	
dichloroethylene, 1,1-	75-35-4	E811C	0.05	mg/kg	<0.050	
dichloroethylene, cis-1,2-	156-59-4	E811C	0.05	mg/kg	<0.050	
dichloroethylene, trans-1,2-	156-60-5	E811C	0.05	mg/kg	<0.050	
dichloromethane	75-09-2	E811C	0.05	mg/kg	<0.050	
dichloropropane, 1,2-	78-87-5	E811C	0.05	mg/kg	<0.050	
dichloropropylene, cis-1,3-	10061-01-5	E811C	0.05	mg/kg	<0.050	
dichloropropylene, trans-1,3-	10061-02-6	E811C	0.05	mg/kg	<0.050	
elhylbenzene	100-41-4		0.015	mg/kg	<0.015	
methyl-tert-butyl ether [MTBE]	1634-04-4		0.05	mg/kg	<0.050	
		E611C				

 Page
 : 9 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QC	Lot: 132110) - continued					
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.05	mg/kg	<0.050	
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.05	mg/kg	<0.050	
letrachloroethylene	127-18-4	E611C	0.05	mg/kg	<0.050	
oluene	108-88-3	E611C	0.05	mg/kg	<0.050	-
richloroethane, 1,1,1-	71-55-8	E611C	0.05	mg/kg	<0.050	
richloroethane, 1,1,2-	79-00-5	E611C	0.05	mg/kg	<0.050	
richloroethylene	79-01-8	E611C	0.01	mg/kg	<0.010	
richlorofluoromethane	75-69-4	E611C	0.05	mg/kg	<0.050	
vinyl chloride	75-01-4	E611C	0.05	mg/kg	<0.050	
kylene, m+p-	179601-23-1	E611C	0.05	mg/kg	<0.050	
xylene, o-	95-47-8	E611C	0.05	mg/kg	<0.050	
Hydrocarbons (QCLot: 132108)						
WHs (C8-C10)		E581.VH+F1	10	mg/kg	<10	
		2001.41111	10	grag	-10	
Hydrocarbons (QCLot: 133682) EPH (C10-C19)		E601A	200	mg/kg	<200	
EPH (C19-C32)		E601A	200	mg/kg	<200	
FH (018-032)		LOUIA	200	III-BLAB	<200	
Hydrocarbons (QCLot: 133683)						
-2 (C10-C16)		E601.SG	25	mg/kg	<25	
					<25	
F3 (C16-C34)	—	E601.SG	50	mg/kg	<50	
					<50	
F4 (C34-C50)	—	E601.SG	50	mg/kg	<50	
Polycyclic Aromatic Hydrocarbon	s (QCLot: 133681)					
acenaphthene	83-32-9	E641A-L	0.005	mg/kg	<0.0050	
acenaphthylene	208-96-8	E641A-L	0.005	mg/kg	<0.0050	
				_	<0.0050	-
acridine	260-94-6		0.01	mg/kg	<0.010	
anthracene	120-12-7	E641A-L	0.004	mg/kg	<0.0040	_
	56-55-3	E844A I	0.01	malka	<0.0040 <0.010	
benz(a)anthracene	50-35-3	E041A-L	0.01	mg/kg	<0.010	
benzo(a)pyrene	50-32-8	E641A-L	0.01	mg/kg	<0.010	
benzo(b+j)fluoranthene		E641A-L	0.01	mg/kg	<0.010	
our resolves fraction on the text	_		50d I		<0.010	
benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	mg/kg	<0.010	
				_	<0.010	
benzo(k)fluoranthene	207-08-9	E641A-L	0.01	mg/kg	<0.010	
					<0.010	

 Page
 : 10 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbo						
thrysene		E641A-L	0.01	mg/kg	<0.010	
fibenz(a,h)anthracene	53-70-3	E641A-L	0.005	mg/kg	<0.0050	
				_	<0.0050	
luoranthene		E641A-L	0.01	mg/kg	<0.010	
luorene		E641A-L	0.01	mg/kg	<0.010	
ndeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	mg/kg	<0.010	
nethylnaphthalene, 1-	90-12-0	E641A-L	0.01	mg/kg	<0.010	
					<0.010	
nethylnaphthalene, 2-		E641A-L	0.01	mg/kg	<0.010	
naphthalene	91-20-3	E641A-L	0.01	mg/kg	<0.010	
shanzafhrana	05.04.0	E641A-L	0.01	ma ⁿ -	<0.010 <0.010	
ohenanthrene		E641A-L	0.01	mg/kg	<0.010	
pyrene	129-00-0	E041A-L	0.01	mg/kg	<0.010	_
quinoline	6027-02-7	FR41AJ	0.01	mg/kg	<0.010	
	Juli Juli		5.51		-0.510	
henolics (QCLot: 133684) hlorophenol, 2-	95-57-8	E851A	0.02	mg/kg	<0.020	
thlorophenol, 3-	108-43-0		0.02	mg/kg	<0.020	
•	106-48-9		0.02		<0.020	
hlorophenol, 4-				mg/kg		
fichlorophenol, 2,3-	576-24-9		0.02	mg/kg	<0.020	-
lichlorophenol, 2,4- + 2,5-		E651A	0.02	mg/kg	<0.020	
fichlorophenol, 2,6-	87-65-0		0.02	mg/kg	<0.020	
lichlorophenol, 3,4-	95-77-2		0.02	mg/kg	<0.020	
fichlorophenol, 3,5-	591-35-5	E651A	0.02	mg/kg	<0.020	
nethylphenol, 4-chloro-3-	59-50-7	E651A	0.02	mg/kg	<0.020	
entachlorophenol [PCP]	87-86-5	E651A	0.02	mg/kg	<0.020	
etrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.02	mg/kg	<0.020	
etrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.02	mg/kg	<0.020	
etrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.02	mg/kg	<0.020	
richlorophenol, 2,3,4-	15950-86-0	E651A	0.02	mg/kg	<0.020	
richlorophenol, 2,3,5-	933-78-8	E651A	0.02	mg/kg	<0.020	
richlorophenol, 2,3,6-	933-75-5		0.02	mg/kg	<0.020	
richlorophenol, 2,4,5-	95-95-4		0.02	mg/kg	<0.020	
richlorophenol, 2,4,6-	88-06-2		0.02	mg/kg	<0.020	
•	609-19-8		0.02		<0.020	
richlorophenol, 3,4,5-	009-19-8	EUUIA	0.02	mg/kg	>0.020	-

 Page
 : 11 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

 Page
 : 12 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number N	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 133685)											
pH (1:2 soil:water)	— E	108	_	pH units	6 pH units	99.8	95.0	105			
Physical Tests (QCLot: 133688)											
moisture	— E	144	0.25	%	50 %	102	90.0	110			
Non-Chlorinated Phenolics (QCLot: 133684											
dimethylphenol, 2,4-	105-67-9 E		0.02	mg/kg	0.5 mg/kg	90.0	30.0	130			
methylphenol, 2-	95-48-7 E		0.02	mg/kg	0.5 mg/kg	88.2	50.0	130			
methylphenol, 3-	108-39-4 E	E651A	0.02	mg/kg	0.5 mg/kg	90.9	50.0	130			
methylphenol, 4-	106-44-5 E	E651A	0.02	mg/kg	0.5 mg/kg	106	50.0	130			
phenol	108-95-2 E	E651A	0.02	mg/kg	0.5 mg/kg	93.5	50.0	130			
Metals (QCLot: 133686)											
mercury	7439-97-6 E	E510	0.005	mg/kg	0.1 mg/kg	98.6	0.08	120			
Metals (QCLot: 133687)											
aluminum	7429-90-5 E	E440	50	mg/kg	200 mg/kg	114	0.08	120			
antimony	7440-36-0 E	E440	0.1	mg/kg	100 mg/kg	113	0.08	120			
arsenic	7440-38-2 E	E440	0.1	mg/kg	100 mg/kg	104	0.08	120			
barium	7440-39-3 E	E440	0.5	mg/kg	25 mg/kg	107	0.08	120			
beryllium	7440-41-7 E	5440	0.1	mg/kg	10 mg/kg	87.3	80.0	120			
bismuth	7440-69-9 E	5440	0.2	mg/kg	100 mg/kg	116	80.0	120			
boron	7440-42-8 E	E440	5	mg/kg	100 mg/kg	89.1	0.08	120			
cadmium	7440-43-9 E	5440	0.02	mg/kg	10 mg/kg	102	80.0	120			
calcium	7440-70-2 E	5440	50	mg/kg	5000 mg/kg	93.4	80.0	120			
chromium	7440-47-3 E	5440	0.5	mg/kg	25 mg/kg	105	0.08	120			
cobalt	7440-48-4 E	E440	0.1	mg/kg	25 mg/kg	108	80.0	120			
copper	7440-50-8 E	5440	0.5	mg/kg	25 mg/kg	106	80.0	120			
iron	7439-89-6 E	E440	50	mg/kg	100 mg/kg	101	80.0	120			
lead	7439-92-1 E	5440	0.5	mg/kg	50 mg/kg	112	80.0	120			
lithium	7439-93-2 E	5440	2	mg/kg	25 mg/kg	87.8	80.0	120			
magnesium	7439-95-4 E	E440	20	mg/kg	5000 mg/kg	117	80.0	120			
manganese	7439-96-5 E	-44 0	1	mg/kg	25 mg/kg	107	80.0	120			
molybdenum	7439-98-7 E	5440	0.1	mg/kg	25 mg/kg	104	80.0	120			
nickel	7440-02-0 E	E440	0.5	mg/kg	50 mg/kg	104	80.0	120			
phosphorus	7723-14-0 E	E440	50	mg/kg	1000 mg/kg	109	80.0	120			

 Page
 : 13 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 133687) - continued								
potassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	113	80.0	120	-
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	104	80.0	120	
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	102	80.0	120	_
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	112	80.0	120	-
strontium	7440-24-8 E440	0.5	mg/kg	25 mg/kg	111	80.0	120	
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	105	80.0	120	_
thallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	120	80.0	120	-
tin	7440-31-5 E440	2	mg/kg	50 mg/kg	103	0.08	120	
titanium	7440-32-6 E440	1	mg/kg	25 mg/kg	99.6	80.0	120	_
tungsten	7440-33-7 E440	0.5	mg/kg	10 mg/kg	103	0.08	120	
uranium	7440-61-1 E440	0.05	mg/kg	0.5 mg/kg	103	0.08	120	
vanadium	7440-62-2 E440	0.2	mg/kg	50 mg/kg	110	0.08	120	
zinc	7440-66-6 E440	2	mg/kg	50 mg/kg	108	0.08	120	
zirconium	7440-67-7 E440	1	mg/kg	10 mg/kg	97.2	80.0	120	-
Volatile Organic Compounds (QCLot: 132	110)							
benzene	71-43-2 E611C	0.005	mg/kg	2.5 mg/kg	87.9	70.0	130	_
bromodichloromethane	75-27-4 E611C	0.05	mg/kg	2.5 mg/kg	110	70.0	130	
bromoform	75-25-2 E611C	0.05	mg/kg	2.5 mg/kg	106	70.0	130	
carbon tetrachloride	56-23-5 E611C	0.05	mg/kg	2.5 mg/kg	109	70.0	130	
chlorobenzene	108-90-7 E611C	0.05	mg/kg	2.5 mg/kg	90.6	70.0	130	
chloroethane	75-00-3 E611C	0.05	mg/kg	2.5 mg/kg	68.3	60.0	140	
chloroform	67-66-3 E611C	0.05	mg/kg	2.5 mg/kg	94.5	70.0	130	
chloromethane	74-87-3 E611C	0.05	mg/kg	2.5 mg/kg	98.4	60.0	140	
dibromochloromethane	124-48-1 E611C	0.05	mg/kg	2.5 mg/kg	120	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E611C	0.05	mg/kg	2.5 mg/kg	91.5	70.0	130	
dichlorobenzene, 1,3-	541-73-1 E811C	0.05	mg/kg	2.5 mg/kg	93.9	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E611C	0.05	mg/kg	2.5 mg/kg	90.9	70.0	130	
dichloroethane, 1,1-	75-34-3 E811C	0.05	mg/kg	2.5 mg/kg	81.1	70.0	130	
dichloroethane, 1,2-	107-08-2 E611C	0.05	mg/kg	2.5 mg/kg	93.8	70.0	130	
dichloroethylene, 1,1-	75-35-4 E811C	0.05	mg/kg	2.5 mg/kg	78.6	70.0	130	
dichloroethylene, cis-1,2-	156-59-4 E611C	0.05	mg/kg	2.5 mg/kg	81.1	70.0	130	
dichloroethylene, trans-1,2-	158-80-5 E811C	0.05	mg/kg	2.5 mg/kg	79.7	70.0	130	
dichloromethane	75-09-2 E811C	0.05	mg/kg	2.5 mg/kg	84.2	60.0	140	
dichloropropane, 1,2-	78-87-5 E811C	0.05	mg/kg	2.5 mg/kg	79.8	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5 E811C	0.05	mg/kg	2.5 mg/kg	70.3	70.0	130	
dichloropropylene, trans-1,3-	10061-02-8 E611C	0.05	mg/kg	2.5 mg/kg	97.4	70.0	130	
ethylbenzene	100-41-4 E811C	0.015	mg/kg	2.5 mg/kg	83.4	70.0	130	_
1 *	I	I						I

 Page
 : 14 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report						
							Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Volatile Organic Compounds (QCLot: 132110) - c												
methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.05	mg/kg	2.5 mg/kg	93.2	70.0	130				
styrene	100-42-5	E611C	0.05	mg/kg	2.5 mg/kg	78.6	70.0	130	_			
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.05	mg/kg	2.5 mg/kg	101	70.0	130				
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.05	mg/kg	2.5 mg/kg	87.4	70.0	130				
tetrachloroethylene	127-18-4	E611C	0.05	mg/kg	2.5 mg/kg	95.8	70.0	130				
toluene	108-88-3	E611C	0.05	mg/kg	2.5 mg/kg	94.3	70.0	130				
trichloroethane, 1,1,1-	71-55-6	E611C	0.05	mg/kg	2.5 mg/kg	86.7	70.0	130				
trichloroethane, 1,1,2-	79-00-5	E611C	0.05	mg/kg	2.5 mg/kg	82.1	70.0	130				
trichloroethylene	79-01-6	E611C	0.01	mg/kg	2.5 mg/kg	96.7	70.0	130				
trichlorofluoromethane	75-69-4	E611C	0.05	mg/kg	2.5 mg/kg	133	60.0	140				
vinyl chloride	75-01-4	E611C	0.05	mg/kg	2.5 mg/kg	60.3	60.0	140	-			
xylene, m+p-	179601-23-1	E611C	0.05	mg/kg	5 mg/kg	88.9	70.0	130	-			
xylene, o-	95-47-6	E611C	0.05	mg/kg	2.5 mg/kg	88.2	70.0	130				
Hydrocarbons (QCLot: 132108)												
VHs (C8-C10)	_	E581.VH+F1	10	mg/kg	85.8 mg/kg	100	70.0	130				
Hydrocarbons (QCLot: 133682)												
EPH (C10-C19)		E601A	200	mg/kg	1134.37 mg/kg	108	70.0	130				
EPH (C19-C32)		E601A	200	mg/kg	575.98 mg/kg	108	70.0	130				
					10183 mg/kg	105	70.0	130				
Hydrocarbons (QCLot: 133683)												
F2 (C10-C16)	_	E601.SG	25	mg/kg	618.75 mg/kg	105	70.0	130				
					4720 mg/kg	9.69	70.0	130				
F3 (C16-C34)		E601.SG	50	mg/kg	1242.49 mg/kg	100	70.0	130				
					14124 mg/kg	96.2	70.0	130				
F4 (C34-C50)	_	E601.SG	50	mg/kg	993.9 mg/kg	94.0	70.0	130				
Polycyclic Aromatic Hydrocarbons (QCLot: 1336)		F0444.1	0.005									
acenaphthene		E641A-L	0.005	mg/kg	0.5 mg/kg	87.7	60.0	130				
acenaphthylene	208-96-8	E641A-L	0.005	mg/kg	0.5 mg/kg	87.4	60.0	130				
	200.04.0	E641A-L	0.04	mat-	0.2 mg/kg	96.3	60.0	130	_			
acridine			0.01	mg/kg	0.5 mg/kg	96.0	60.0	130				
anthracene	120-12-7	E641A-L	0.004	mg/kg	0.5 mg/kg	96.0	60.0	130				
h	E0 EF 2	E641A-L	0.04	mat-	0.32 mg/kg	95.9	60.0	130	-			
benz(a)anthracene	20-00-3	E041A-L	0.01	mg/kg	0.5 mg/kg	80.6	60.0	130				
h(-)	ED 00 0	FO44A I	0.04		0.545 mg/kg	80.7	60.0	130				
benzo(a)pyrene	50-32-8	E641A-L	0.01	mg/kg	0.5 mg/kg	92.3	60.0	130				

 Page
 : 15 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report						
							Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Polycyclic Aromatic Hydrocarbons												
benzo(b+j)fluoranthene	_	E641A-L	0.01	mg/kg	0.5 mg/kg	84.6	60.0	130				
					0.793 mg/kg	79.9	60.0	130				
benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	mg/kg	0.5 mg/kg	84.9	60.0	130	_			
					0.377 mg/kg	85.1	60.0	130	-			
benzo(k)fluoranthene	207-08-9	E641A-L	0.01	mg/kg	0.5 mg/kg	0.08	60.0	130				
					0.34 mg/kg	71.1	60.0	130	-			
chrysene		E641A-L	0.01	mg/kg	0.5 mg/kg	73.5	60.0	130	-			
dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	mg/kg	0.5 mg/kg	93.8	60.0	130				
					1.196 mg/kg	94.9	60.0	130				
fluoranthene	206-44-0	E641A-L	0.01	mg/kg	0.5 mg/kg	96.7	60.0	130	-			
fluorene	86-73-7	E641A-L	0.01	mg/kg	0.5 mg/kg	99.1	60.0	130				
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	mg/kg	0.5 mg/kg	99.5	60.0	130	-			
methylnaphthalene, 1-	90-12-0	E641A-L	0.01	mg/kg	0.5 mg/kg	83.0	60.0	130				
					1.256 mg/kg	84.5	60.0	130				
methylnaphthalene, 2-	91-57-8	E641A-L	0.01	mg/kg	0.5 mg/kg	75.6	60.0	130	-			
naphthalene	91-20-3	E641A-L	0.01	mg/kg	0.5 mg/kg	77.8	50.0	130	-			
					1.03 mg/kg	87.6	50.0	130	-			
phenanthrene	85-01-8	E641A-L	0.01	mg/kg	0.5 mg/kg	96.9	60.0	130	-			
pyrene	129-00-0	E641A-L	0.01	mg/kg	0.5 mg/kg	93.2	60.0	130	_			
					1.325 mg/kg	87.8	60.0	130	-			
quinoline	6027-02-7	E641A-L	0.01	mg/kg	0.5 mg/kg	82.4	60.0	130	-			
Phenolics (QCLot: 133684)												
chlorophenol, 2-	95-57-8	E651A	0.02	mg/kg	0.5 mg/kg	96.8	60.0	130				
chiorophenol, 3-	108-43-0	E651A	0.02	mg/kg	0.5 mg/kg	99.5	60.0	130				
chlorophenol, 4-	106-48-9	E651A	0.02	mg/kg	0.5 mg/kg	101	60.0	130	-			
dichlorophenol, 2,3-	576-24-9	E651A	0.02	mg/kg	0.5 mg/kg	100	60.0	130	-			
dichlorophenol, 2,4- + 2,5-	_	E651A	0.02	mg/kg	1 mg/kg	101	60.0	130				
dichlorophenol, 2,6-	87-65-0	E651A	0.02	mg/kg	0.5 mg/kg	99.4	60.0	130				
dichlorophenol, 3,4-	95-77-2	E651A	0.02	mg/kg	0.5 mg/kg	98.3	60.0	130				
dichlorophenol, 3,5-	591-35-5	E651A	0.02	mg/kg	0.5 mg/kg	101	60.0	130	_			
methylphenol, 4-chloro-3-	59-50-7	E651A	0.02	mg/kg	0.5 mg/kg	102	60.0	130				
pentachlorophenol [PCP]	87-86-5	E651A	0.02	mg/kg	0.5 mg/kg	102	60.0	130				
tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.02	mg/kg	0.5 mg/kg	99.1	60.0	130				
tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.02	mg/kg	0.5 mg/kg	102	60.0	130				
tetrachlorophenol, 2,3,5,6-	935-95-5		0.02	mg/kg	0.5 mg/kg	101	60.0	130				
trichlorophenol. 2.3.4-	15950-66-0	E651A	0.02	mg/kg	0.5 mg/kg	98.2	60.0	130				
trichlorophenol, 2,3,5-	933-78-8		0.02	mg/kg	0.5 mg/kg	99.8	60.0	130				
anamarapanatral, E,u,u	833-70-0	Locin	0.02		U.S ING/NG	88.0	00.0	130				

 Page
 : 16 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Phenolics (QCLot: 133684) - continued												
richlorophenol, 2,3,6-	933-75-5	E651A	0.02	mg/kg	0.5 mg/kg	101	60.0	130				
trichlorophenal, 2,4,5-	95-95-4	E651A	0.02	mg/kg	0.5 mg/kg	99.4	60.0	130				
trichlorophenal, 2,4,6-	88-06-2	E651A	0.02	mg/kg	0.5 mg/kg	102	60.0	130				
trichlorophenol, 3,4,5-	609-19-8	E651A	0.02	mg/kg	0.5 mg/kg	98.7	60.0	130				

 Page
 : 17 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/Solid						Matrix Spike (MS) Report							
	+				Spike		Recovery (%)	Recovery Limits (%)					
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie			
on-Chlorinated	Phenolics (QCLot:	133684)											
VA20C3384-002	Anonymous	dimethylphenol, 2,4-	105-67-9	E651A	0.418 mg/kg	0.5 mg/kg	90.5	30.0	150	-			
		methylphenol, 2-	95-48-7	E651A	0.373 mg/kg	0.5 mg/kg	80.9	50.0	150				
		methylphenol, 3-	108-39-4	E651A	0.450 mg/kg	0.5 mg/kg	97.6	50.0	150				
		methylphenol, 4-	106-44-5	E651A	0.449 mg/kg	0.5 mg/kg	97.2	50.0	150				
		phenol	108-95-2	E651A	0.423 mg/kg	0.5 mg/kg	91.6	50.0	150				
olatile Organic	Compounds (QCLo	t: 132110)											
VA20C3369-002	Anonymous	benzene	71-43-2	E811C	6.06 mg/kg	3.125 mg/kg	86.4	60.0	140	-			
		bromodichloromethane	75-27-4	E611C	7.24 mg/kg	3.125 mg/kg	103	60.0	140				
		bromoform	75-25-2	E611C	9.72 mg/kg	3.125 mg/kg	138	60.0	140	_			
		carbon tetrachloride	58-23-5	E811C	7.52 mg/kg	3.125 mg/kg	107	60.0	140	_			
		chlorobenzene	108-90-7	E611C	6.89 mg/kg	3.125 mg/kg	98.2	60.0	140	_			
		chloroethane	75-00-3	E611C	5.66 mg/kg	3.125 mg/kg	80.7	60.0	140	_			
		chloroform	67-66-3	E611C	7.22 mg/kg	3.125 mg/kg	103	60.0	140	-			
		chloromethane	74-87-3	E611C	5.13 mg/kg	3.125 mg/kg	73.2	60.0	140	-			
		dibromochloromethane	12 4-4 8-1	E611C	8.73 mg/kg	3.125 mg/kg	124	60.0	140	_			
		dichlorobenzene, 1,2-	95-50-1	E611C	6.89 mg/kg	3.125 mg/kg	98.2	60.0	140	_			
		dichlorobenzene, 1,3-	541-73-1	E611C	7.00 mg/kg	3.125 mg/kg	99.8	60.0	140	_			
		dichlorobenzene, 1,4-	106-46-7	E811C	6.90 mg/kg	3.125 mg/kg	98.3	60.0	140	_			
		dichloroethane, 1,1-	75-34-3	E611C	5.57 mg/kg	3.125 mg/kg	79.5	60.0	140	-			
		dichloroethane, 1,2-	107-08-2	E611C	6.25 mg/kg	3.125 mg/kg	89.1	60.0	140	-			
		dichloroethylene, 1,1-	75-35-4	E611C	5.94 mg/kg	3.125 mg/kg	84.6	60.0	140	_			
		dichloroethylene, cis-1,2-	156-5 9-4	E611C	5.50 mg/kg	3.125 mg/kg	78.4	60.0	140	-			
		dichloroethylene, trans-1,2-	156-60-5	E611C	5.69 mg/kg	3.125 mg/kg	81.1	60.0	140	_			
		dichloromethane	75-09-2	E811C	5.85 mg/kg	3.125 mg/kg	83.5	60.0	140	_			
		dichloropropane, 1,2-	78-87-5	E611C	5.41 mg/kg	3.125 mg/kg	77.1	60.0	140	-			
		dichloropropylene, cis-1,3-	10061-01-5	E611C	4.86 mg/kg	3.125 mg/kg	69.3	60.0	140	_			
		dichloropropylene, trans-1,3-	10061-02-6	E611C	4.37 mg/kg	3.125 mg/kg	62.3	60.0	140	_			
		ethylbenzene	100-41-4	E611C	6.42 mg/kg	3.125 mg/kg	91.6	60.0	140	_			
		methyl-tert-butyl ether [MTBE]	1634-04-4	E811C	7.32 mg/kg	3.125 mg/kg	104	60.0	140	_			
		styrene	100-42-5	E611C	8.94 mg/kg	3.125 mg/kg	128	60.0	140				
	1	tetrachloroethane, 1,1,1,2-	630-20-6	E611C	7.54 mg/kg	3.125 mg/kg	108	60.0	140				

 Page
 : 18 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid					Matrix Spike (MS) Report						
					Sp	ike	Recovery (%)	Recovery	/ Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Volatile Organic	Compounds (QCLo	t: 132110) - continued									
VA20C3369-002	Anonymous	tetrachloroethane, 1,1,2,2-	79-34-5	E611C	6.52 mg/kg	3.125 mg/kg	92.9	60.0	140		
		tetrachloroethylene	127-18-4	E611C	7.23 mg/kg	3.125 mg/kg	103	60.0	140		
		toluene	108-88-3	E611C	7.20 mg/kg	3.125 mg/kg	102	60.0	140		
		trichloroethane, 1,1,1-	71-55-8	E611C	5.97 mg/kg	3.125 mg/kg	85.2	60.0	140		
		trichloroethane, 1,1,2-	79-00-5	E611C	6.03 mg/kg	3.125 mg/kg	86.0	60.0	140		
		trichloroethylene	79-01-6	E611C	6.53 mg/kg	3.125 mg/kg	93.1	60.0	140		
		trichlorofluoromethane	75-69-4	E611C	9.68 mg/kg	3.125 mg/kg	138	60.0	140		
		vinyl chloride	75-01-4	E611C	5.64 mg/kg	3.125 mg/kg	80.4	60.0	140		
		xylene, m+p-	179601-23-1	E611C	13.7 mg/kg	6.25 mg/kg	97.8	60.0	140		
		xylene, o-	95-47-8	E611C	6.76 mg/kg	3.125 mg/kg	96.3	60.0	140		
Hydrocarbons (0	QCLot: 132108)										
VA20C3279-009	Anonymous	VHs (C8-C10)		E581.VH+F1	138 mg/kg	171.9 mg/kg	90.2	60.0	140		
Phenolics (QCLo	ot: 133684)										
VA20C3384-002	Anonymous	chlorophenol, 2-	95-57-8	E651A	0.414 mg/kg	0.5 mg/kg	89.7	50.0	150		
		chlorophenol, 3-	108-43-0	E651A	0.466 mg/kg	0.5 mg/kg	101	50.0	150		
		chlorophenal, 4-	106-48-9	E651A	0.460 mg/kg	0.5 mg/kg	99.7	50.0	150		
		dichlorophenol, 2,3-	576-24-9	E651A	0.458 mg/kg	0.5 mg/kg	99.3	50.0	150		
		dichlorophenol, 2,4- + 2,5-		E651A	0.916 mg/kg	1 mg/kg	99.2	50.0	150		
		dichlorophenol, 2,6-	87-65-0	E651A	0.445 mg/kg	0.5 mg/kg	96.4	50.0	150		
		dichlorophenol, 3,4-	95-77-2	E651A	0.482 mg/kg	0.5 mg/kg	104	50.0	150		
		dichlorophenol, 3,5-	591-35-5	E651A	0.459 mg/kg	0.5 mg/kg	99.4	50.0	150		
		methylphenol, 4-chloro-3-	59-50-7	E651A	0.462 mg/kg	0.5 mg/kg	100	50.0	150		
		pentachlorophenol [PCP]	87-86-5	E651A	0.431 mg/kg	0.5 mg/kg	93.4	50.0	150		
		tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.463 mg/kg	0.5 mg/kg	100	50.0	150		
		tetrachiorophenol, 2,3,4,6-	58-90-2	E651A	0.506 mg/kg	0.5 mg/kg	110	50.0	150		
		tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.640 mg/kg	0.5 mg/kg	139	50.0	150	-	
		trichlorophenol, 2,3,4-	15950-66-0	E651A	0.476 mg/kg	0.5 mg/kg	103	50.0	150	_	
		trichlorophenol, 2,3,5-	933-78-8	E651A	0.464 mg/kg	0.5 mg/kg	100	50.0	150		
		trichlorophenol, 2,3,6-	933-75-5	E651A	0.463 mg/kg	0.5 mg/kg	100	50.0	150	-	
		trichlorophenol, 2,4,5-	95-95-4	E651A	0.463 mg/kg	0.5 mg/kg	100	50.0	150	-	
		trichlorophenol, 2,4,6-	88-06-2	E651A	0.469 mg/kg	0.5 mg/kg	102	50.0	150		
		trichlorophenol, 3,4,5-	609-19-8	E651A	0.468 mg/kg	0.5 mg/kg	101	50.0	150		

 Page
 : 19 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/Solid						Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery I	Limits (%)				
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier			
Metals (QCLot: 1	33686)											
QC-133686-003	SCP SS-2	mercury	7439-97-6	E510	0.059 mg/kg	93.2	70.0	130				
Metals (QCLot: 1	33687)											
QC-133687-003	SCP SS-2	aluminum	7429-90-5	E440	9817 mg/kg	128	70.0	130				
QC-133687-003	SCP SS-2	antimony	7440-36-0	E440	3.99 mg/kg	105	70.0	130				
QC-133687-003	SCP SS-2	arsenic	7440-38-2	E440	3.73 mg/kg	106	70.0	130				
QC-133687-003	SCP SS-2	barium	7440-39-3	E440	105 mg/kg	110	70.0	130				
QC-133687-003	SCP SS-2	beryllium	7440-41-7	E440	0.349 mg/kg	113	70.0	130				
QC-133687-003	SCP SS-2	boron	7440-42-8	E440	8.5 mg/kg	126	40.0	160				
QC-133687-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	110	70.0	130				
QC-133687-003	SCP SS-2	calcium	7440-70-2	E440	31082 mg/kg	123	70.0	130				
QC-133687-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	115	70.0	130				
QC-133687-003	SCP SS-2	cobalt	7440-48-4	E440	6.9 mg/kg	111	70.0	130				
QC-133687-003	SCP SS-2	copper	7440-50-8	E440	123 mg/kg	111	70.0	130				
QC-133687-003	SCP SS-2	iron	7439-89-6	E440	23558 mg/kg	106	70.0	130				
QC-133687-003	SCP SS-2	lead	7439-92-1	E440	267 mg/kg	118	70.0	130				
QC-133687-003	SCP SS-2	lithium	7439-93-2	E440	9.5 mg/kg	109	70.0	130				
QC-133687-003	SCP SS-2	magnesium	7439-95-4	E440	5509 mg/kg	116	70.0	130				
QC-133687-003	SCP SS-2	manganese	7439-96-5	E440	269 mg/kg	114	70.0	130				
QC-133687-003	SCP SS-2	molybdenum	7439-98-7	E440	1.03 mg/kg	108	70.0	130				
QC-133687-003	SCP SS-2	nickel	7440-02-0	E440	26.7 mg/kg	103	70.0	130				
QC-133687-003	SCP SS-2	phosphorus	7723-14-0	E440	752 mg/kg	108	70.0	130				
QC-133687-003	SCP SS-2	potassium	7440-09-7	E440	1587 mg/kg	119	70.0	130				
QC-133687-003	SCP SS-2	sodium	7440-23-5	E440	797 mg/kg	107	70.0	130				
QC-133687-003	SCP SS-2	strontium	7440-24-6	E440	86.1 mg/kg	116	70.0	130				
QC-133687-003	SCP SS-2	thallium	7440-28-0	E440	0.0786 mg/kg	113	40.0	160				
QC-133687-003	SCP SS-2	tin	7440-31-5	E440	10.6 mg/kg	107	70.0	130				
QC-133687-003	SCP SS-2	titanium	7440-32-6	E440	839 mg/kg	118	70.0	130				
QC-133687-003	SCP SS-2	uranium	7440-61-1	E440	0.52 mg/kg	107	70.0	130				

 Page
 : 20 of 20

 Work Order
 : VA20C3415

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Soil/Solid					Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery I	Limits (%)			
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier		
Metals (QCLot: 1	33687) - continued										
QC-133687-003	SCP SS-2	vanadium	7440-62-2	E440	32.7 mg/kg	113	70.0	130			
QC-133687-003	SCP SS-2	zinc	7440-66-6	E440	297 mg/kg	105	70.0	130			
QC-133687-003	SCP SS-2	zirconium	7440-67-7	E440	5.73 mg/kg	106	70.0	130			
Hydrocarbons (G	(CLot: 133682)										
QC-133682-003	Petroleum Hydrocarbon IRM	EPH (C10-C19)	_	E601A	7113 mg/kg	102	70.0	130			
Hydrocarbons (C	(CLot: 133683)										
QC-133683-003	Petroleum Hydrocarbon IRM	F4 (C34-C50)	_	E601.SG	1238 mg/kg	103	70.0	130			
Polycyclic Aroma	tic Hydrocarbons (QC	Lot: 133681)									
QC-133681-003	RM	acenaphthene	83-32-9	E641A-L	0.638 mg/kg	84.4	60.0	130			
QC-133681-003	RM	benzo(a)pyrene	50-32-8	E641A-L	0.135 mg/kg	93.5	60.0	130			
QC-133681-003	RM	chrysene	218-01-9	E641A-L	0.666 mg/kg	74.2	60.0	130			
QC-133681-003	RM	fluoranthene	206-44-0	E841A-L	1.757 mg/kg	90.6	60.0	130			
QC-133681-003	RM	fluorene	86-73-7	E841A-L	0.989 mg/kg	96.2	60.0	130			
QC-133681-003	RM	indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.445 mg/kg	95.0	60.0	130			
QC-133681-003	RM	methylnaphthalene, 2-	91-57-6	E641A-L	1.088 mg/kg	79.6	60.0	130			
QC-133681-003	RM	phenanthrene	85-01-8	E641A-L	1.13 mg/kg	92.0	60.0	130			

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 17 - 865484

Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Report To Correct and company name below will appear on the final report		Report Format	t / Distribution			Select Ser	vice Level Below	- Contact y	our AM to	confirm all	E&P TATs	surcharges	may apply)	\neg
company: WSP (anst Inc.	Select Report Fo	rmat: PDF	EXCEL	EDO (DIGITAL)		Regular [R] Standard	d TAT if rece	rved by 3 pn	n - business da	ıys - no surche	arges apply		
Contact: Marina Makovetski	Quality Control (QC) Report with Rep	ort res	i NO	1 2	day [P4-2	0%]	11	Business	day [E - 10	10%]			•
Phone: (04-353-7077	Compare Resu	ils to Criteria on Report -			Date (day [P3-2	5%]	§ Sa	me Day, \	Neekend o	r Statutory	holiday [E	2 -200%	\
Company address below will appear on the final report	Select Distribution	n: EMAIL	MAIL	FAX	6 2	day [P2-5	0%]	° (La	boratory	opening fe	ees may ap	aply)]		
Street 100-20339 96 Ave	Email 1 or Fax	Marine.	Makovetsh	- OWSP.COM		ate and Time	Required for all E&	P TATs:			dd-mmm	-yy-hh:mm-		
City/Province: (NA/PM, BC	Email 2 +0	Ly, Chulley	DW5	rom		hat can not be	performed according to	the service I	evel selected	, you will be co	ntacted.			
Postal Code:	Email 3	1							Analysis	Request				
Invoice To Same as Report To YES NO		Invoice Di	stribution		J., L		Indicate Fitered (F).	Preserved (I	P) or Filtered	and Preserve	d (F/P) below			=
Copy of Invoice with Report YES NO	Select Invoice Di	stribution: E	BMAIL MAIL	FAX	CONTAINERS								HOLD	SUSPECTED HAZARD (see Special Instructions)
Company:	Email 1 or Fax				뿌[0	ž
Contact:	Email 2				151				1		l l	-	I	ž.
Project Information		il and Gas Require		ise)	151	1.							NO	i i
ALS Account # / Quote #:	AFE/Cost Center:		PO# Routing Code:		۱ō۱		_		'			.	0	8
Job# 2014-00758-90	MajoriMinor Code:		101								S	8		
PO / AFE:	Requisitioner:			비하			1					Ŭ	8	
LSD:	Location:				I . I		1						~	182
ALS Lab Work Order # (lab use only):	ALS Contact:		Sampler: M	MIRI	ᄪ			1					АМР	l â l
				11170	۱≝۱		7				[5
ALS Sample # Sample Identification and/or Coordinates (lab use only) (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUMBER	-	Environmental Division			1 }		1 %	8	
(This description was appear on the report)			(micromy	15-1	-		vai	Vancouver Work Order Reference VA20C3415				+	 ~	 " -
20-MW100.3m		12 DECTO	+	Sqil	2		- i	VORK OF	der Ref	erence	-	+-+	17	\vdash
20-MW100,bm					14		` '	V A 2	UC,	3418	5 🗀	+-	11 -	₩
20-MW1@1.2m					4									Ш
RO-MW/02m		•			2			H(y)	No. II					Ш
20-MW 10 2,7m					2			1111						
20-MW1@ 4-4m					2			III n Az		84 IIII				\Box
2 2 = 20-MW 2 (0 0.3 m			-		2		· •	III II.G.	₩ -71#4	51 IIII	1			\vdash
20-MW 200 0, 6m			 -		4		Telepho	X10:+16				 - - - - - - - - - -	11	\vdash
20-MW 20 1.2 m		- 	 	+ 1 -	4	-	(an: +10	14 253 416	98		+-	+	Н
20-MW203,2m		 		+	4		-	1			-4-	+	 -/-	+-+
		 	+		+		-	-			\vdash	+	 - 	┼┤
20-MW 20 4.5 m		- J	 	\ti	2	\rightarrow		\vdash		1	<u> </u>		11/-	\vdash
20-MW3@ 0.3m		У	<u> </u>	4	41								X	Ш
Drinking Water (DW) Samples¹ (client use)		add on report by ello stronic COC only)	king on the drop-	down list below			SAMPL				(lab use o			
Are samples taken from a Regulated DW System?	(610	one one coc unity			Frozen			SIF Obse		Yes		No No		
YES NO				1	Cooling	Initiated	Ice Cubes	Custody	seal Intac	t Yes	, 🛛	- NO		۱ ۳
Are samples for human consumption/ use?					COOING		COOLER TEMPERAT	URES SC			FINAL COOL	ER TEMPERA	TURES °C	
Yes No.					3 1	7	SOURCE CONTENTS	SILD O		1 6	7	-		
SHIPMENT RELEASE (client use)	1/ 4	INITIAL SHIPMEN	NT RECEPTION (lah use only)	la la	2 2	4	FINAL S	HIPMENT		ON (lab use	e only)	بستاب	
	Received by: #		Date: g	ase only)	Time:	Recei	ved by:		Date;				Time:	3
KOLY CI 15 DEC 2020 3:25		8/ 4	1	t * 5	-	o. 4	wed by:	D	J	Dec	-15		3150	ו זיץ נ
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	ITE - LABORATOR	Y COPY YELLO	W - CLIEN	IT COPY	-						JUNES	SELENSACH

S) Environmental www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 17 - 865479

Canada Toll Free: 1 800 668 9878

H-11-Carina	532011.00111				3 Su					!								
	and company name below will app	ear on the final report		Report Format	/ Distribution			Select Sen	vice Levi	el Below -	- Contact	your AM t	o confirm	all E&P	TATs (su	rcharges m	ay apply)	
	Canada Inc.		Select Report Fo	ormat: PDF	EXCEL E	DO (DIGITAL)		Regular [l	R)	Standard	TAT if rec	ceived by 3 p	m - busines	s days - no	surcharge	s apply		
Contact: Marin	Makowski		Quality Control (QC) Report with Rep	ort YES	NO NO	E 4	day [P4-2	0%] [595	Busines	s day [E -	100%]				
Phone: 604_353-	7077		Compare Reti	ults to Criteria on Report -			3 808	day [P3-2	5%] [S S	ame Day,	Weekend	or Stat	utory he	oliday [E2	-200%	_
	s below will appear on the fin		Select Distribution		MAIL		E 2 2	day [P2-5	0%]		_ (r	aborator,	y opening	g fees m	ay appl	y)]		느
Street: (00 - 20 - 3	39-46-AL	NG	Email 1 or Fax	maria_make	ontinino-h	Vill. form		te and Time	Required	for all E&P	TATs:			dd:	mmm-yy	.hh:mm		
City/Province: Langley,	BC		Email 2 Pot-	Y Chutley 6	WJP. (0)	M	For tests th	at can not be p	performed a	eccording to	the service	level selects	d, you will be	contacted.				
Postal Code:			Email 3									Analysis	Request					
nvoice To Same as Report	To YES	NO NO		Invoice Di	stribution				Indicate F	Filtered (F), 1	Preserved	(P) or Fittere	d and Prese	rved (F/P)	below		0	
Copy of Invoice v	ith Report YES	NO NO	Select Invoice D	stribution: E	MAIL MAIL	FAX	ONTAINERS										НОГ	ion
Company:			Email 1 or Fax				Ì╗┌										0	g
Contact:			Email 2							1	-				l . l		I	를
1	roject Information			Dil and Gas Require	d Fields (client u	se)	ΙÈΙ										Z	ig.
ALS Account # / Quote #:			AFE/Cost Center:		PO#		161										NO	Sp.
lob#: 20M-0075	8-00		MajoriMinor Code:		Routing Code:		ΙŭΙ	1 1									S	35
PO/AFE:			Requisitioner:				씽	-									ш	8
.SD:			Location:				اچا							1.				1 2
ALS Lab Work Order # (lab u	te only):	В	ALS Contact:		Sampler: M	100											<u>a</u>	±
7	or only).	. 10	Pico dominati.		Samplet / / /	MIRC	181	1 1							1 1		AM	5
ALS Sample ∉ (lab use only)		n and/or Coordinates		Date	Time	Sample Type	NUMBE	-										SUSPECTED HAZARD
ALL VICE		appear on the report)		(dd-mmm-yy)	(hh:mm)					-	-	-	\vdash	+	\vdash		S	- <u>20</u>
20-MV	13@ Oct m			12 DEC 50		Soil	2	\perp						-	\sqcup		X_{-}	↓
20-Mh	301,2m				L		4										1	Ш
* 20- MV	1302,2m					1 1	4											
20- Mh	130 4.5 m	-					2			-			·					П
20- DV	PI-MM		-	4		₩ .	4								1			1
20	771							-	\neg	-							_	\vdash
34				 	 	+				+-		_	-	+	\vdash	_		+
4.4					ļ	 :	 	++		+	-		-	+-	\vdash		\vdash	\vdash
San "F							\vdash								\vdash	+		\vdash
		<u> </u>						-	\rightarrow					\bot	\vdash			\vdash
the the terms of t		· · · · · · · · · · · · · · · · · · ·								\perp					1			+
					<u> </u>												1	Ш
8																	JØ.	Ш
Drinking Water (DW) Sar	nnles! (client use)	Special Instructions /			king on the drop-d	lown list below						ITION AS				'		_
re samples taken from a Regulated	· · · · · · · · · · · · · · · · · · ·		(ele	etronic COC only)			Frozen					servations		-		No		밀
YES NO	OW System?						Ice Pack		Ice Cub	es '	Custody	y seal inta	ct Ye	es [No		_
Are samples for human consumption	. Canal						Cooling		<u>U</u>	TEMPERAT	LIGHTO NO			CIMAL	COOLEG	TEMPERATU	BES SC	
	ruser						<u> </u>	INITIAL	SOOLER I	ENPERMI	UKES C			FINEN	T	TEMPERATE	nes c	
YES NO	NT RELEASE (client use		-	INITIAL SUIDMEN	T DECERTION #	ah una natut					EIMAL	SHIPMEN	T DECEC	TION C	h use s	nh()		
Released by:	Data	Times	Received by:	INITIAL SHIPMEN	Date: 4	ao use only)	Time:	Recei	ved by:		PINAL :	Date		HON (R	au u58 0	науу	Time:	-
Kery C.	15060	2020 3.25	· · · · · · · · · · · · · · · · · · ·			₹.							4					
REFER TO BACK PAGE FOR ALS LO	CATIONS AND SAMPLING IN	FORMATION		WHI	TE - LABORATORY	COPY YELLOV	V - CLIEN	COPY									AND	2218 FRONT

Environmental

Chain of Custody (COC) (Analytical Request Form Canada Toll Free: 1 808 868 9878

N N	Report Formet / Distribution	of Service Level Balow - Contact your All to confirm at PAP IATE (sand-state
nbot No. 1 Aug. Inc.	Select Roport Formation (2) Finds (2) Excess (3) Finds (3) Finds	ular [R] Sandard Wale maked by Spin-Bases One- or and and safety
604-353-7077	Quality Control (QC) Report with Report was 1 1.10: with Case Control of Cont	[Pedok] = [2]
Company address below wil appain on the final report	Select Derivation 150	P.3.25%]Same Day Meet and or Statutory holiday [E.
100- 20339 96 Dus	CAST CAST CAST CAST CAST CAST CAST CAST	[PZ 50'5]: [H]
25	France Milk Flin - Modewitt, 10 Wolf Con Son Contra	s flay the industrial designation of the second second of the first of the second of t
0	Emily Poly Chulkky W.S. P. Color of the Color	nd to performed exceeding to the sets to best demand. The set to committee A . A. M. M. M. M. M. M. M. M.
olice To Same as Report To Kill 11 No		Tall Analysis Regined Co. S. Sperificial Tital
YES	Select Journal of the Control of the	Section (Section (F) Printernal (P) in Florest and Communication (F) printing (F)
16	Email 2	
	E STATE OF THE STA	関連を からり からり かんけい
Project Information		お の は は は は は は は は は は は は は は は は は は
	1,120	を建設が対しておりていたと
10 758-on whave to	Materialist Conf.	大学 ない とない からい グイクラ
	_	
	HO Cocon	
ALS Exposure Comment (pp. Incomp)	TO THE CONTRACT (O TO A CAMPAGE OF A DAY OF THE CONTRACT OF TH	
ALS surples Sample Genutification and/or Coordinates	O C Sample year	MAC NAME OF THE PARTY OF THE PA
OC-A-L/T O O 3	OUT THE STATE OF T	
-		
200 MM 102 12 W	文 中の 一世	が記入る を記れる を記れる を記れる を記れる を記れる を記れる を記れる を記れる を記れる を記れる を記れる には、これる には、 には、 には、 には、 には、 には、 には、 には、
20- MW 8 2		· · · · · · · · · · · · · · · · · · ·
PIGENWILL OF 217/W		
AND AND PARTY		
20 M 1 1 0 0 2 W		
1 Dr. MW 3 A 0, 60		
20-MW 20 1 2 M		
20-MW20 3.2 W		
20-MW 20 4 5 m		
20-MW3@0.3m		Environmental Division
Drinking Water (DW) Samples (client use)	ctione (Spacify Criticals to each on report by attenting on the drop down list below.)	Vancouver Work Order Beforen
A lead to the form of the graph of the form of the fo	はいから こうこうしょう こうしょうしょうしゅう	VA20C3415
The first of the f	CW Indoor Justine Comment	
Polyment (1975)		
題とい題の場合を表示でいました。 プライン		

Telephone: +1 604 253 4198

Chain of Custody (COC) / Analytical Request Form

Canada Toli Free: 1 800 668 9878

Affix ALS barcode label here.

Report To e est Report Formati #8+ [5] Spor [3] Format [8] (600 (618104) g al, a Regular [R] Leality Contro. (GC) Report with Report 1997 | Step | 100 s 4 day [P4-20%] Company address below will appear on the tinal report Select Ofstribution. 2 day [P2-50%] Street City/Province Postal Code: Invoice To Same as Report To YES NO Copy of Invalce with Report YES NO Scient levelos Distribution: ᇹ Company Email Lor Fax Contact: Project Information ALS Account # / Quote # ō JOD# 2011-00758 PO/AFE: LSD: ALS Sample (lab use only) Orinking Water (DW) Samples' (client use) ies taken from a Regulated DW System SINITIAL SHIPMENT RECEPTION (lab) use on

CERTIFICATE OF ANALYSIS

Work Order : VA20C3698

Client : WSP Canada Group Limited

Contact : Marina Makovetski

Address : Unit 100 - 20339 96 Avenue

: 17-865482

Langley BC Canada V1M 0E4

Telephone : --Project : ---

PO : ----

Sampler : ---

Site : MetroVan RFP 17-161 - Study for Grit and Screenings Phase 2

 Quote number
 : Q76820

 No. of samples received
 : 4

 No. of samples analysed
 : 4

Page : 1 of 9

Laboratory : Vancouver - Environmental

Account Manager : Carla Fuginski

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188
Date Samples Received : 17-Dec-2020 16:05

Date Analysis Commenced : 19-Dec-2020

Issue Date : 29-Dec-2020 16:00

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Cristina Alexandre	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Jashan Kaur	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 9

Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
μg/L	micrograms per litre
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Page : 3 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : ---

Sub-Matrix: Water			CI	ient sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client campli	ng date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
A	04041	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
Analyte	CAS Number	wetnod	LOR	Onit	Result	Result	Result	Result	
Physical Toylo					rvesuit	rvesuit	Result	rcesuit	
Physical Tests pH		E108	0.10	pH units	7.32				
hardness (as CaCO3), dissolved		EC100	600	µg/L	87300	92900	354000	359000	
		20100	000	h8/L	07000	62.000	33-1000	000000	
Anions and Nutrients chloride	16887-00-6	E235.CI	0.50	mg/L	64.5	41.4	7.40	7.42	
	10007-00-0		0.00	mgrc	01.0		7.10	7.12	
Non-Chlorinated Phenolics dimethylphenol, 2,4-	105-67-9	E651A	0.20	μg/L	<0.20				
methylphenol, 2-	105-07-9 95-48-7		0.50	µg/L	<0.50				
methylphenol, 3-	95-48-7 108-39-4		0.20	μg/L	<0.20		_		
methylphenol, 4-			0.20		<0.20	_	_		
phenol	108-44-5 108-95-2		0.20	μg/L μg/L	<0.20				
	108-95-2	LOUIA	0.20	h8/r	~0.20				
Dissolved Metals aluminum, dissolved	7429-90-5	F421	1.0	μg/L	5.1	35.4	6.7	7.2	
antimony, dissolved			0.10		<0.10	0.12	0.15	0.15	
arsenic, dissolved	7440-38-0 7440-38-2		0.10	μg/L ug/l	2.43	11.2	9.99	10.1	
barium, dissolved			0.10	μg/L ug/l	2. 4 3 94.1	66.4	310	296	
•	7440-39-3		0.10	µg/L	<0.100	<0.100	<0.100	<0.100	
beryllium, dissolved bismuth, dissolved	7440-41-7		0.100	µg/L	<0.050	<0.050	<0.050	<0.100	
boron, dissolved	7440-69-9		10	µg/L	51	39	<0.050 65	64	
	7440-42-8		0.0050	µg/L	<0.0050	<0.0150 ^{0LM}	0.0133	0.0158	
cadmium, dissolved	7440-43-9		50	µg/L	23400	26500		111000	
calcium, dissolved	7440-70-2			µg/L	0.015	20500 <0.010	108000 0.020	0.021	
cesium, dissolved	7440-46-2		0.010 0.10	µg/L	0.015	1.03	0.020	0.021	
chromium, dissolved	7440-47-3			µg/L					
cobalt, dissolved	7440-48-4		0.10	μg/L	1.82	0.72	6.77	6.77	
copper, dissolved	7440-50-8		0.20	μg/L	0.68	0.47	<0.20	<0.20	
iron, dissolved	7439-89-6		10	μg/L	3340	2500	34900	35200	
lead, dissolved	7439-92-1		0.050	μg/L	<0.050	<0.050	<0.050	<0.050	
lithium, dissolved	7439-93-2		1.0	μg/L	1.8	1.7	7.7	7.7	
magnesium, dissolved	7439-95-4		5.0	μg/L	7010	6490	20500	19800	
manganese, dissolved	7439-96-5		0.10	μg/L	1690	877	4780	4680	
mercury, dissolved	7439-97-6		0.0050	μg/L	<0.0050	<0.0050	<0.0050	<0.0050	
molybdenum, dissolved	7439-98-7	E421	0.050	μg/L	1.38	23.4	4.20	4.28	

Page : 4 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

ALS

Sub-Matrix: Water			C	lient sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client compli	ing date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
Analytic	CAS Number	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
Analyte	CAS Number	Metriod	Lon	Olik.	Result	Result	Result	Result	
Dissolved Metals		1 1 1 1 1 1 1 1			rvesun	rvesus	rvesur	rvesuit	
nickel, dissolved	7440-02-0	E421	0.50	μg/L	2.82	1.63	5.45	5.36	
phosphorus, dissolved	7723-14-0		50	μg/L	94	164	70	54	
potassium, dissolved	7440-09-7	E421	50	μg/L	3640	3080	5760	5730	
rubidium, dissolved	7440-17-7	E421	0.20	μg/L	3.21	1.84	4.67	4.91	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	<0.050	0.175	0.463	0.460	
silicon, dissolved	7440-21-3		50	μg/L	12600	9630	15000	14600	
silver, dissolved	7440-22-4		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
sodium, dissolved	17341-25-2	E421	50	μg/L	97100	102000	42000	41000	
strontium, dissolved	7440-24-6	E421	0.20	μg/L	156	122	510	528	
sulfur, dissolved	7704-34-9	E421	500	μg/L	<500	7090	13200	13000	
tellurium, dissolved	13494-80-9	E421	0.20	μg/L	<0.20	<0.20	<0.20	<0.20	
thallium, dissolved	7440-28-0	E421	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
thorium, dissolved	7440-29-1	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
tin, dissolved	7440-31-5	E421	0.10	μg/L	0.11	0.14	<0.10	0.10	
titanium, dissolved	7440-32-6	E421	0.30	μg/L	<0.30	3.06	0.58	0.52	
tungsten, dissolved	7440-33-7	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
uranium, dissolved	7440-61-1	E421	0.010	μg/L	0.144	0.280	1.08	1.07	
vanadium, dissolved	7440-62-2	E421	0.50	μg/L	0.54	4.09	0.84	0.82	
zinc, dissolved	7440-66-6	E421	1.0	μg/L	1.9	1.3	3.6	3.8	
zirconium, dissolved	7440-67-7	E421	0.20	μg/L	<0.20	1.58	0.47	0.45	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	
Volatile Organic Compounds									
chlorobenzene	108-90-7	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
chlorobenzene	108-90-7	E611C	1.00	μg/L	<1.00	-	_		
chloromethane	74-87-3	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
dichlorobenzene, 1,2-	95-50-1	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611C	0.50	μg/L	-	<0.50	<0.50	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611C	1.00	μg/L	<1.00	_	_		
dichlorobenzene, 1,4-	108-46-7	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichlorobenzene, 1,4-	106-46-7		1.00	μg/L	<1.00	-	_		
dichloropropane, 1,2-	78-87-5	E611C	0.50	μg/L	_	<0.50	<0.50	<0.50	

Page : 5 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : ---

ALS

Sub-Matrix: Water			(Client sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client same	ling date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
Analida	CAS Number	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
Analyte	CAS Number	meanod	2011	01111	Result	Result	Result	Result	
Volatile Organic Compounds					T VESUE	I Vicania	T SEJUN	T VESTILE	
dichloropropane, 1,2-	78-87-5	E611C	1.00	μg/L	<1.00				
dichloropropylene, cis+trans-1,3-	542-75-6		0.75	μg/L		<0.75	<0.75	<0.75	
dichloropropylene, cis+trans-1,3-	542-75-6		1.00	μg/L	<1.00				
dichloropropylene, cis-1,3-	10061-01-5		0.50	μg/L	< 0.50	<0.50	<0.50	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6		0.50	μg/L		<0.50	<0.50	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6	E611C	1.00	μg/L	<1.00				
tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.20	μg/L	<0.20	<0.20	<0.20	<0.20	
trichloroethane, 1,1,2-	79-00-5	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
trichlorofluoromethane	75-69-4	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
trichlorofluoromethane	75-69-4	E611C	1.00	μg/L	<1.00				
Volatile Organic Compounds [Drycleaning]									
carbon tetrachloride	56-23-5	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
chloroethane	75-00-3	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
chloroethane	75-00-3	E611C	1.00	μg/L	<1.00		-		
dichloroethane, 1,1-	75-34-3	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichloroethane, 1,1-	75-34-3	E611C	1.00	μg/L	<1.00		_		
dichloroethane, 1,2-	107-06-2	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichloroethane, 1,2-	107-06-2	E611C	1.00	μg/L	<1.00		_		
dichloroethylene, 1,1-	75-35-4	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichloroethylene, 1,1-	75-35-4	E611C	1.00	μg/L	<1.00		_		
dichloroethylene, cis-1,2-	156-59-4		0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
dichloroethylene, trans-1,2-	156-60-5	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichloroethylene, trans-1,2-	156-60-5	E611C	1.00	μg/L	<1.00	-	-		
dichloromethane	75-09-2	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dichloromethane	75-09-2		5.00	μg/L	<5.00		-		
dichloropropylene, trans-1,3-	10061-02-6		0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
tetrachloroethylene	127-18-4	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
tetrachloroethylene	127-18-4		1.00	μg/L	<1.00	_			
trichloroethane, 1,1,1-	71-55-6		0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
trichloroethylene	79-01-6	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
trichloroethylene	79-01-6		1.00	μg/L	<1.00	_			
vinyl chloride	75-01-4	E611C	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	

Page : 6 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Sub-Matrix: Water			c	lient sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client same	ing date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
A14-	CAS Number	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
Analyte	CAS Number	metriod	Lon	O'III	Result	Result	Result	Result	
Volatile Organic Compounds [Fuels]					resur	rvesus	rvesuit	rocaus	
benzene	71-43-2	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
ethylbenzene	100-41-4		0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
methyl-tert-butyl ether [MTBE]	1634-04-4		0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
styrene	100-42-5	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
toluene	108-88-3	E611C	0.40	μg/L	<0.40	<0.40	<0.40	<0.40	
xylene, m+p-	179601-23-1	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
xylene, o-	95-47-6	E611C	0.50	μg/L	<0.50	<0.50	<0.50	<0.50	
xylenes, total	1330-20-7	E611C	0.75	μg/L	<0.75	<0.75	<0.75	<0.75	
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E611C	0.50	96	95.5	98.3	89.7	95.4	
difluorobenzene, 1,4-	540-36-3	E611C	0.50	%	106	111	110	102	
Hydrocarbons									
EPH (C10-C19)	_	E601A	250	μg/L	<250	<250	<250	<250	
EPH (C19-C32)		E601A	250	μg/L	<250	<250	<250	<250	
F2 (C10-C16)		E601	300	μg/L	<300				
F3 (C16-C34)		E601	300	μg/L	<300				
F4 (C34-C50)		E601	300	μg/L	<300				
HEPHw		EC600A	250	μg/L	<250	<250	<250	<250	
LEPHw		EC800A	250	μg/L	<250	<250	<250	<250	
VHw (C6-C10)		E581.VH+F1	100	μg/L	<100	<100	<100	<100	
F1 (C6-C10)		E581.VH+F1	100	μg/L	<100	_			
F1-BTEX		EC580	100	μg/L	<100	_	_		
VPHw		EC580A	100	μg/L	<100	<100	<100	<100	
Hydrocarbons Surrogates									
bromobenzotrifluoride, 2- (ЕРН surr)	392-83-6	E601A	50	%	88.0	92.0	81.5	93.8	
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	E601	50	%	81.8				
dichlorotoluene, 3,4-	97-75-0	E581.VH+F1	1.0	%	79.2	75.3	72.5	75.3	
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641B	0.010	μg/L	<0.010	<0.010	0.023	0.021	
acenaphthylene	208-96-8		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
acridine	260-94-6		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
anthracene	120-12-7	E641B	0.010	μg/L	<0.010	<0.010	0.010	<0.010	

Page : 7 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : ---

ALS

Sub-Matrix: Water			G	lient sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client sampl	ing date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
					Result	Result	Result	Result	
Polycyclic Aromatic Hydrocarbons									
anthraquinone, 9,10-	84-65-1	E641B	0.050	μg/L	<0.050	<0.050	<0.050	<0.050	
benz(a)anthracene	56-55-3	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
benzo(a)pyrene	50-32-8	E641B	0.0050	μg/L	<0.0050	<0.0050	<0.0050	<0.0050	
benzo(b+j)fluoranthene		E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
benzo(b+j+k)fluoranthene		E641B	0.015	μg/L	<0.015	<0.015	<0.015	<0.015	
benzo(e)pyrene	192-97-2	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
benzo(g,h,i)perylene	191-24-2	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
benzo(k)fluoranthene	207-08-9	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
chloronaphthalene, 2-	91-58-7	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
chrysene	218-01-9	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
dibenz(a,h)anthracene	53-70-3	E641B	0.0050	μg/L	<0.0050	<0.0050	<0.0050	<0.0050	
dimethylbenz(a)anthracene, 7,12-	57-97-6	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
fluoranthene	208-44-0	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
fluorene	86-73-7	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
methylcholanthrene, 3-	56-49-5	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
methylnaphthalene, 1-	90-12-0		0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
methylnaphthalene, 2-	91-57-6	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
methylnaphthalenes, 1+2-		E641B	0.015	μg/L	<0.015	<0.015	<0.015	<0.015	
naphthalene	91-20-3	E641B	0.050	μg/L	<0.050	<0.050	<0.050	<0.050	
nitropyrene, 4-	57835-92-4	E641B	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
perylene	198-55-0	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
phenanthrene	85-01-8	E641B	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
pyrene	129-00-0	E641B	0.010	μg/L	<0.010	<0.010	<0.010	<0.010	
quinoline	6027-02-7	E641B	0.050	μg/L	<0.050	<0.050	<0.050	<0.050	
B(a)P total potency equivalents [B(a)P TPE]		E641B	0.0075	μg/L	<0.0075	<0.0075	<0.0075	<0.0075	
PAHs, high molecular weight (BC AWQ)		E641B	0.030	μg/L	<0.030	<0.030	<0.030	<0.030	
PAHs, low molecular weight (BC AWQ)		E641B	0.060	μg/L	<0.060	<0.060	<0.060	<0.060	
PAHs, total (EPA 16)		E641B	0.065	μg/L	<0.065	<0.065	<0.065	<0.065	
PAHs, total (P2MMP)		E641B	0.040	μg/L	<0.040	<0.040	<0.040	<0.040	
Polycyclic Aromatic Hydrocarbons Surrogates		1 1 1 1 1							
acridine-d9	34749-75-2	E641B	0.010	%	113	72.9	100	102	

Page : 8 of 9 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : ---

ALS

Sub-Matrix: Water				Client sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client same	ling date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
A	CACH	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
Analyte	CAS Number	weiriod	LOR	OIII	Result	Result	Result	Result	
Debuggie Assessie Hudessehaus Communica					rvesuit	rvesuit	Result	rvesuit	
Polycyclic Aromatic Hydrocarbons Surrogates chrysene-d12	1719-03-5	E641B	0.010	%	118	89.4	109	94.3	
naphthalene-d8	1146-65-2		0.010	%	97.6	80.4	84.1	93.7	
phenanthrene-d10	1517-22-2		0.010	%	112	98.1	102	110	
Volatile Organic Compounds [THMs]									
bromodichloromethane	75-27-4	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
bromodichloromethane		E611C	1.00	μg/L	<1.00				
bromoform	75-25-2	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
bromoform	75-25-2	E611C	1.00	μg/L	<1.00				
chloroform	67-66-3	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
chloroform	67-66-3	E611C	1.00	μg/L	<1.00				
dibromochloromethane	124-48-1	E611C	0.50	μg/L		<0.50	<0.50	<0.50	
dibromochloromethane	124-48-1	E611C	1.00	μg/L	<1.00				
Phenolics									
chlorophenol, 2-	95-57-8	E651A	0.050	μg/L	<0.050				
chlorophenol, 3-	108-43-0	E651A	0.050	μg/L	<0.050				
chlorophenol, 4-	106-48-9	E651A	0.050	μg/L	<0.050				
dichlorophenol, 2,3-	576-24-9	E651A	0.050	μg/L	<0.050				
dichlorophenol, 2,4- + 2,5-		E651A	0.050	μg/L	<0.050				
dichlorophenol, 2,6-	87-65-0	E651A	0.050	μg/L	<0.050				
dichlorophenol, 3,4-	95-77-2	E651A	0.050	μg/L	<0.050				
dichlorophenol, 3,5-	591-35-5	E651A	0.050	μg/L	<0.050				
methylphenol, 4-chloro-3-	59-50-7	E651A	0.10	μg/L	<0.10				
pentachlorophenol [PCP]	87-86-5	E651A	0.10	μg/L	<0.10				
tetrachlorophenol, 2,3,4,5-		E651A	0.10	μg/L	<0.10				
tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.10	μg/L	<0.10				
tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.10	μg/L	<0.10				
trichlorophenol, 2,3,4-	15950-66-0	E651A	0.10	μg/L	<0.10				
trichlorophenol, 2,3,5-		E651A	0.10	μg/L	<0.10				
trichlorophenol, 2,3,6-	933-75-5		0.10	μg/L	<0.10				
trichlorophenol, 2,4,5-		E651A	0.10	μg/L	<0.10				
trichlorophenol, 2,4,6-	00 00 2	E651A	0.10	μg/L	<0.10	-	-		
trichlorophenol, 3,4,5-	609-19-8	E651A	0.10	μg/L	<0.10				

Page : 9 of 9

Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	20-MW1	20-MW2	20-MW3	20-DUP1	
(Matrix: Water)									
			Client samplii	ng date / time	17-Dec-2020	17-Dec-2020	17-Dec-2020	17-Dec-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20C3698-001	VA20C3698-002	VA20C3698-003	VA20C3698-004	
					Result	Result	Result	Result	
Phenolics Surrogates									
chlorophenol-d4, 2-	93951-73-6	E651A	0.10	%	96.1				
dichlorophenol-d3, 2,4-	93951-74-7	E651A	0.10	%	92.5				
tribromophenol, 2,4,6-	118-79-6	E651A	0.10	%	108		_		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA20C3698 Page : 1 of 12

Client : WSP Canada Group Limited Laboratory : Vancouver - Environmental

Contact : Marina Makovetski Account Manager : Carla Fuginski

: Unit 100 - 20339 96 Avenue Address : 8081 Lougheed Highway

Langley BC Canada V1M 0E4 Burnaby, British Columbia Canada V5A 1W9

 Telephone
 :-- Telephone
 :+1 604 253 4188

 Project
 :-- Date Samples Received
 : 17-Dec-2020 16:05

PO :--- Issue Date : 29-Dec-2020 16:00 C-O-C number : 17-865482

Sampler :----

Site : MetroVan RFP 17-161 - Study for Grit and Screenings Phase 2

Quote number : Q76820
No. of samples received : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

No. of samples analysed

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

:4

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

. No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

· Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

No Quality Control Sample Frequency Outliers occur.

Page : 3 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : -

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment		
Laboratory Control Sample (LCS) Recoveries										
Volatile Organic Compounds	QC-133524-002		dichloropropylene, trans-1,3-	10061-02-6	E611C	62.6 % LCS-ND	70.0-130%	Recovery less than lower control limit		
Polycyclic Aromatic Hydrocarbons	QC-MRG2-1337900 02		nitropyrene, 4-	57835-92-4	E641B	154 % LCS-ND	50.0-140%	Recovery greater than upper control limit		

Result Qualifiers

Qualifier	Description
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.

Page : 4 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗷 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pri	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC										
HDPE 20-DUP1	E235.CI	17-Dec-2020	_				21-Dec-2020	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE 20-MW1	E235.CI	17-Dec-2020	-	_			21-Dec-2020	28 days	4 days	√
Anions and Nutrients : Chloride in Water by IC										
HDPE 20-MW2	E235.CI	17-Dec-2020					21-Dec-2020	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE 20-MW3	E235.CI	17-Dec-2020	-				21-Dec-2020	28 days	4 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) 20-DUP1	E421.Cr-L	17-Dec-2020	19-Dec-2020	180 days	2 days	~	21-Dec-2020	177 days	2 days	~
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) 20-MW1	E421.Cr-L	17-Dec-2020	19-Dec-2020	180 days	2 days	~	21-Dec-2020	177 days	2 days	1
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) 20-MW2	E421.Cr-L	17-Dec-2020	19-Dec-2020	180 days	2 days	~	21-Dec-2020	177 days	2 days	~

Page : 5 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Matrix: Water					Ev	valuation: 🗷 =	Holding time exce	edance ; •	= Within	Holding T
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	iis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
20-MW3	E421.Cr-L	17-Dec-2020	19-Dec-2020	180	2 days	✓	21-Dec-2020	177	2 days	1
				days				days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
20-DUP1	E509	17-Dec-2020	22-Dec-2020	28	5 days	✓	22-Dec-2020	22 days	0 days	✓
				days						
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
20-MW1	E509	17-Dec-2020	22-Dec-2020	28	5 days	✓	22-Dec-2020	22 days	0 days	1
				days						
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
20-MW2	E509	17-Dec-2020	22-Dec-2020	28	5 days	✓	22-Dec-2020	22 days	0 days	1
				days	-				•	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
20-MW3	E509	17-Dec-2020	22-Dec-2020	28	5 days	✓	22-Dec-2020	22 days	0 days	1
				days	,-					
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
20-DUP1	E421	17-Dec-2020	19-Dec-2020	180	2 days	1	21-Dec-2020	177	2 days	1
23 551 1				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				,						
HDPE dissolved (nitric acid)										
20-MW1	E421	17-Dec-2020	19-Dec-2020	180	2 days	1	21-Dec-2020	177	2 days	1
20-WW 1	2121	17 DEG 2020	10 000 2020	days	2 days		21-000-2020	days	2 days	-
Disabled Matela & Disabled Matela is 1844 at a CDO (CDM)				days				uays		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) 20-MW2	E421	17-Dec-2020	19-Dec-2020	180	2 days	1	21-Dec-2020	177	2 days	/
20-MIM45	L-12.1	11-060-2020	18-060-2020		2 days	*	2 1-De0-2020		2 uays	•
				days				days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)	E424	47 D 2022	40.0		.		B4 B 8855		.	1
20-MW3	E421	17-Dec-2020	19-Dec-2020	180	2 days	✓	21-Dec-2020	177	2 days	-
				days				days		

Page : 6 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Matrix: Water					Ev	/aluation: 🗷 =	Holding time exce	edance ; v	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW1	E601A	17-Dec-2020	21-Dec-2020	14	4 days	✓	23-Dec-2020	40 days	1 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW2	E601A	17-Dec-2020	21-Dec-2020	14	4 days	✓	23-Dec-2020	40 days	1 days	V
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW3	E601A	17-Dec-2020	21-Dec-2020	14	4 days	✓	23-Dec-2020	40 days	1 days	✓
				days						
Hydrocarbons : BC PHC - EPH by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-DUP1	E601A	17-Dec-2020	22-Dec-2020	14	5 days	✓	23-Dec-2020	40 days	0 days	✓
				days						
Hydrocarbons : CCME PHC - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW1	E601	17-Dec-2020	21-Dec-2020	14	4 days	✓	23-Dec-2020	40 days	1 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
20-DUP1	E581.VH+F1	17-Dec-2020	19-Dec-2020	14	2 days	✓	19-Dec-2020	11 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
20-MW1	E581.VH+F1	17-Dec-2020	19-Dec-2020	14	2 days	✓	19-Dec-2020	11 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)		47.0								
20-MW2	E581.VH+F1	17-Dec-2020	19-Dec-2020	14	2 days	✓	19-Dec-2020	11 days	0 days	✓
				days						
Hydrocarbons : VH and F1 by Headspace GC-FID										
Glass vial (sodium bisulfate)										
20-MW3	E581.VH+F1	17-Dec-2020	19-Dec-2020	14	2 days	~	19-Dec-2020	11 days	0 days	✓
				days						

Page : 7 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Matrix: Water					Ev	aluation: 🗷 =	Holding time exce	edance ; v	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	y Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Non-Chlorinated Phenolics : Phenolics (Western Canada List, No Nitro-Phenols) b	y GC-MS									
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW1	E651A	17-Dec-2020	19-Dec-2020				23-Dec-2020			
Phenolics : Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW1	E651A	17-Dec-2020	19-Dec-2020	14	2 days	✓	23-Dec-2020	40 days	3 days	1
				days						
Physical Tests : pH by Meter										
HDPE										
20-MW1	E108	17-Dec-2020					21-Dec-2020	0.25	108 hrs	åt.
								hrs		EHTR-FM
Polycyclic Aromatic Hydrocarbons : PAHs (BC Special List) by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
20-MW1	E641B	17-Dec-2020	21-Dec-2020	14	4 days	✓	22-Dec-2020	40 days	1 days	√
				days						
Polycyclic Aromatic Hydrocarbons : PAHs (BC Special List) by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)	50445	47.5								
20-MW2	E641B	17-Dec-2020	21-Dec-2020	14	4 days	*	22-Dec-2020	40 days	1 days	*
				days						
Polycyclic Aromatic Hydrocarbons : PAHs (BC Special List) by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)	E044D	47.0 0000	04 0 - 0000				00.0	40.4		
20-MW3	E641B	17-Dec-2020	21-Dec-2020	14	4 days	~	22-Dec-2020	40 days	1 days	*
				days						
Polycyclic Aromatic Hydrocarbons : PAHs (BC Special List) by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)	E641B	17-Dec-2020	22-Dec-2020		5 days	1	22-Dec-2020	40 days	O door	,
20-DUP1	E041B	17-Dec-2020	22-Dec-2020	14	o days	*	22-Dec-2020	40 days	u days	· ·
W 1 (1) 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				days						
Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 20-DUP1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
200011	20110	17-060-2020	18-060-2020				18-060-2020			
W. C.										
Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 20-MW1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
ZU-MIW I	Lorio	17-060-2020	18-Dec-2020				18-Dec-2020			

Page : 8 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Matrix: Water					Ev	/aluation: 🗷 =	Holding time excee	edance ; v	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	iis	
Container / Client Sample ID(s)			Preparation	Holding	y Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-MW2	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-MW3	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-DUP1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-MW1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)		47.5								
20-MW2	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [Drycleaning] : VOCs (BC List) by Headspace GC-MS							,			
Glass vial (sodium bisulfate)	F0440	47.0 0000	40.0				40.0-0000			
20-MW3	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	E611C	17-Dec-2020	19-Dec-2020		2 dave	1	19-Dec-2020	11 days	O deser	1
20-DUP1	E0110	17-De0-2020	19-Dec-2020	14	2 days	*	19-Dec-2020	11 days	u days	•
				days						
Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 20-MW1	E611C	17-Dec-2020	19-Dec-2020	14	2 days	1	19-Dec-2020	11 daye	0 days	1
20-MW 1	LUTTO	17-060-2020	19-Dec-2020		2 days	*	19-Dec-2020	11 days	u days	•
				days						
Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 20-MW2	E611C	17-Dec-2020	19-Dec-2020		2 days	1	19-Dec-2020	11 days	0 dove	1
ZU-MINAS	LUTTO	17-060-2020	19-Dec-2020	14	2 days	*	19-Dec-2020	11 days	u days	•
				days						

Page : 9 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : -

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time										
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	iis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS	Volatile Organic Compounds [Fuels] : VOCs (BC List) by Headspace GC-MS									
Glass vial (sodium bisulfate)										
20-MW3	E611C	17-Dec-2020	19-Dec-2020	14	2 days	✓	19-Dec-2020	11 days	0 days	✓
				days						
Volatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-DUP1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
20-MW1	E611C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	E611C	17-Dec-2020	40.0 0000				40.0			
20-MW2	E011C	17-Dec-2020	19-Dec-2020				19-Dec-2020			
Volatile Organic Compounds [THMs] : VOCs (BC List) by Headspace GC-MS										
Glass vial (sodium bisulfate)	E611C	17-Dec-2020	40.0				40.0			
20-MW3	E011C	17-Dec-2020	19-Dec-2020				19-Dec-2020			

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 10 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : -

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			ion: × = QC frequ	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Chloride in Water by IC	E235.CI	133829	2	21	9.5	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	133470	1	8	12.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	134456	1	10	10.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	133469	1	20	5.0	5.0	
pH by Meter	E108	133826	1	8	12.5	5.0	
VH and F1 by Headspace GC-FID	E581.VH+F1	133523	1	12	8.3	5.0	
VOCs (BC List) by Headspace GC-MS	E611C	133524	1	12	8.3	5.0	
Laboratory Control Samples (LCS)	20110	100021					•
BC PHC - EPH by GC-FID	E601A	133789	2	27	7.4	5.0	1
CCME PHC - F2-F4 by GC-FID	E601	133791	1	1	100.0	5.0	
Chloride in Water by IC	E235.CI	133829	2	21	9.5	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	133470	1	8	12.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	134456	1	10	10.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	133469	1	20	5.0	5.0	
PAHs (BC Special List) by Hexane LVI GC-MS	E641B	133790	2	9	22.2	5.0	
pH by Meter	E108	133826	1	8	12.5	5.0	
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E651A	133407	1	10	10.0	5.0	- ✓
VH and F1 by Headspace GC-FID	E581.VH+F1	133523	1	12	8.3	5.0	
VOCs (BC List) by Headspace GC-MS	E611C	133524	1	12	8.3	5.0	
Method Blanks (MB)							
BC PHC - EPH by GC-FID	E601A	133789	2	27	7.4	5.0	1
CCME PHC - F2-F4 by GC-FID	E601	133791	1	1	100.0	5.0	
Chloride in Water by IC	E235.CI	133829	2	21	9.5	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	133470	1	8	12.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	134456	1	10	10.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	133469	1	20	5.0	5.0	
PAHs (BC Special List) by Hexane LVI GC-MS	E641B	133790	2	9	22.2	5.0	
Phenolics (Western Canada List, No Nitro-Phenols) by GC-MS	E651A	133407	1	10	10.0	5.0	
VH and F1 by Headspace GC-FID	E581.VH+F1	133523	1	12	8.3	5.0	
VOCs (BC List) by Headspace GC-MS	E611C	133524	1	12	8.3	5.0	
Matrix Spikes (MS)							•
Chloride in Water by IC	E235.CI	133829	2	21	9.5	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	133470	1	8	12.5	5.0	
Dissolved Mercury in Water by CVAAS	E509	134456	1	10	10.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	133469	1	20	5.0	5.0	
VH and F1 by Headspace GC-FID	E581.VH+F1	133523	1	12	8.3	5.0	
VOCs (BC List) by Headspace GC-MS	E611C	133524	1	12	8.3	5.0	

Page : 11 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : -

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108 Vancouver -	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
Chloride in Water by IC	E235.CI Vancouver - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Vancouver -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Dissolved Mercury in Water by CVAAS	E509	Water	APHA 3030B/EPA	Water samples are filtered (0.45 um), preserved with HCI, then undergo a cold-oxidation
Dissoved melculy in Water by CVVVIS	Vancouver - Environmental	Water	1631E (mod)	using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
VH and F1 by Headspace GC-FID	E581.VH+F1 Vancouver - Environmental	Water	BC MOE Lab Manual / CCME PHC in Soil - Tier 1 (mod)	Volatile Hydrocarbons (VH and F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
CCME PHC - F2-F4 by GC-FID	E601 Vancouver - Environmental	Water	CCME PHC in Soil - Tier 1	CCME Fractions 2-4 (F2-F4) are analyzed by GC-FID.
BC PHC - EPH by GC-FID	E601A Vancouver - Environmental	Water	BC MOE Lab Manual	Extractable Petroleum Hydrocarbons (EPH) are analyzed by GC-FID.
VOCs (BC List) by Headspace GC-MS	E811C Vancouver - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs (BC Special List) by Hexane LVI GC-MS	E641B Vancouver - Environmental	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.

Page : 12 of 12 Work Order : VA20C3698

Client : WSP Canada Group Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Phenolics (Western Canada List, No	E651A	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
Nitro-Phenols) by GC-MS				
	Vancouver -			
	Environmental			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Vancouver -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	property of water due to dissolved divalent cations. F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
FI-BIEX	EC380	water	4	, , , , , , , , , , , , , , , , , , , ,
	Vancouver -		'	ethylbenzene and xylenes (BTEX).
	Environmental			
VPH: VH-BTEX-Styrene	EC580A	Water	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHw = Volatile
-			(VPH in Water and	Hydrocarbons (VH6-10) minus benzene, toluene, ethylbenzene, xylenes (BTEX) and
	Vancouver -		Solids) (mod)	styrene.
	Environmental			
LEPH and HEPH: EPH-PAH	EC600A	Water	BC MOE Lab Manual	Light Extractable Petroleum Hydrocarbons (LEPH) and Heavy Extractable Petroleum
			(LEPH and HEPH)	Hydrocarbons (HEPH) are calculated as follows: LEPH = Extractable Petroleum
	Vancouver -		(mod)	Hydrocarbons (EPH10-19) minus Acenaphthene, Acridine, Anthracene, Fluorene,
	Environmental			Naphthalene and Phenanthrene; HEPH = Extractable Petroleum Hydrocarbons
				(EPH19-32) minus Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Vancouver -			
	Environmental			
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCI.
	Vancouver -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Vancouver -			GC/MS-FID system.
515	Environmental		ED1-0544 (B	
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
	V			extracted using a hexane liquid-liquid extraction.
	Vancouver -			
Phenolics Extraction	Environmental	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
I REMAINS EAUGUST	EP651	valei	CFA 3511 (mod)	т петиль аге ехиволей потп вышь вучения заприе изпуд очи пуши-пуши ехивсиоп.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page :VA20C3698 : 1 of 20

Laboratory : Vancouver - Environmental

Contact : Marina Makovetski Account Manager : Carla Fuginski

> Address :8081 Lougheed Highway

> > Burnaby, British Columbia Canada V5A 1W9

Telephone :+1 604 253 4188 Date Samples Received :17-Dec-2020 16:05

> Date Analysis Commenced ·19-Dec-2020

:29-Dec-2020 16:00 Issue Date

Client : WSP Canada Group Limited

Address : Unit 100 - 20339 96 Avenue Langley BC Canada V1M 0E4

Telephone Project PO

C-O-C number : 17-865482

Sampler

Site : MetroVan RFP 17-161 - Study for Grit and Screenings Phase 2

Quote number :Q76820

No. of samples received : 4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Cristina Alexandre	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Jashan Kaur	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Team Leader - Inorganics	Inorganics, Burnaby, British Columbia
Paul Cushing	Team Leader - Organics	Organics, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 2 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project ---

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :-

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (QC	Lot: 133826)										
/A20C2661-002	Anonymous	pН	_	E108	0.10	pH units	7.57	7.57	0.00%	4%	_
nions and Nutrient	ts (QC Lot: 133829)										
/A20C3273-001	Anonymous	chloride	16887-00-6	E235.Cl	0.50	mg/L	2.12	1.42	0.70	Diff <2x LOR	_
nions and Nutrient	ts (QC Lot: 133919)										
/A20C3706-001	Anonymous	chloride	16887-00-6	E235.Cl	2.50	mg/L	20.6	21.0	0.41	Diff <2x LOR	_
issolved Metals (0	QC Lot: 133469)										
S2002946-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0018	0.0015	0.0002	Diff <2x LOR	-
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	_
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00126	0.00123	1.78%	20%	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0341	0.0352	3.25%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.016	0.016	0.0005	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	93.4	95.2	1.92%	20%	_
		cesium, dissolved	7440-46-2	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	_
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00014	0.00013	0.00001	Diff <2x LOR	_
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	_
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.015	0.015	0.0004	Diff <2x LOR	_
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0055	0.0054	0.00005	Diff <2x LOR	_
		magnesium, dissolved	7439-95-4	E421	0.100	mg/L	27.6	27.0	2.21%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	1.06	1.03	2.77%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000904	0.000913	0.934%	20%	_
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00082	0.00082	0.000002	Diff <2x LOR	-
		phosphorus, dissolved	7723-14-0	E421	0.300	mg/L	<0.300	<0.300	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.03	2.00	1.57%	20%	
		rubidium, dissolved	7440-17-7	E421	0.00020	mg/L	0.00177	0.00163	0.00014	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	_
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	9.35	9.27	0.802%	20%	_
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

Page : 4 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Dissolved Metals ((QC Lot: 133469) - conti	nued									
KS2002946-001	Anonymous	sodium, dissolved	17341-25-2	E421	0.050	mg/L	7.95	7.72	3.00%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.471	0.470	0.294%	20%	-
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	19.1	19.0	0.663%	20%	
		tellurium, dissolved	13494-80-9	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, dissolved	7440-29-1	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	_
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	_
		titanium, dissolved	7440-32-6	E421	0.0100	mg/L	<0.0100	<0.0100	0	Diff <2x LOR	
		tungsten, dissolved	7440-33-7	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00618	0.00652	5.39%	20%	_
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	_
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
Dissolved Metals ((OC Lot: 133470)										
KS2002946-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	_
Dissolved Metals (OC Let: 434456)					-					
VA20C3685-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	_
Volatila Organia Co	ompounds (QC Lot: 133	-									
VA20C3819-001	Anonymous	benzene	71-43-2	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromoform	75-25-2	E811C	0.50	µg/L	1.16	1.39	0.23	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E811C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E811C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroethane	75-00-3	E811C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
			67-66-3	E811C	0.50		7.36	7.85	6.42%	30%	_
		chloroform			0.50	µg/L	<0.50	7.85 <0.50	0.42%	Diff <2x LOR	
		chloromethane	74-87-3	E611C		µg/L					
		dibromochloromethane	124-48-1	E811C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	_
		dichlorobenzene, 1,3-	541-73-1	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	_
		dichlorobenzene, 1,4-	108-48-7	E611C	0.50	μg/L 	<0.50	<0.50	0	Diff <2x LOR	_
		dichloroethane, 1,1-	75-34-3	E611C	0.50	µg/L -	<0.50	<0.50	0	Diff <2x LOR	_
		dichloroethane, 1,2-	107-06-2	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	_
		dichloroethylene, 1,1-	75-35-4	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-4	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	_
		dichloroethylene, trans-1,2-	156-60-5	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	-

Page : 5 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 133	524) - continued									
VA20C3819-001	Anonymous	dichloromethane	75-09-2	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611C	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611C	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-89-4	E611C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611C	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611C	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, o-	95-47-6	E811C	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 133523)										
VA20C3819-001	Anonymous	F1 (C8-C10)	_	E581.VH+F1	100	μg/L	<100	<100	0.00%	30%	
		VHw (C8-C10)	_	E581.VH+F1	100	µg/L	<100	<100	0.00%	30%	

Page : 6 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 133829)				
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 133919)				
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Non-Chlorinated Phenolics (QCLot: 1	33407)				
dimethylphenol, 2,4-	105-87-9 E651A	0.2	µg/L	<0.20	
methylphenol, 2-	95-48-7 E651A	0.5	µg/L	<0.50	
methylphenol, 3-	108-39-4 E651A	0.2	µg/L	<0.20	
methylphenol, 4-	106-44-5 E651A	0.2	µg/L	<0.20	
phenol	108-95-2 E651A	0.2	μg/L	<0.20	
Dissolved Metals (QCLot: 133469)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	-
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-89-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cesium, dissolved	7440-48-2 E421	0.00001	mg/L	<0.000010	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
phosphorus, dissolved	7723-14-0 E421	0.05	mg/L	<0.050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
rubidium, dissolved	7440-17-7 E421	0.0002	mg/L	<0.00020	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	

Page : 7 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 133469) - co	ontinued					
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	<0.00010	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
tungsten, dissolved	7440-33-7	E421	0.0001	mg/L	<0.00010	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-87-7	E421	0.0002	mg/L	<0.00020	
Dissolved Metals (QCLot: 133470)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 134456)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
Volatile Organic Compounds (QCLot:	133524)					
benzene	71-43-2		0.5	µg/L	<0.50	
bromodichloromethane	75-27-4	E611C	0.5	µg/L	<0.50	
bromoform	75-25-2	E611C	0.5	µg/L	<0.50	
carbon tetrachloride	56-23-5	E611C	0.5	µg/L	<0.50	
chlorobenzene	108-90-7	E611C	0.5	μg/L	<0.50	
chloroethane	75-00-3	E611C	0.5	µg/L	<0.50	
chloroform	67-66-3	E611C	0.5	µg/L	<0.50	
chloromethane	74-87-3	E811C	0.5	µg/L	<0.50	
dibromochloromethane	12 4 4 8-1	E811C	0.5	µg/L	<0.50	
dichlorobenzene, 1,2-	95-50-1	E811C	0.5	µg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1	E811C	0.5	µg/L	<0.50	
dichlorobenzene, 1,4-	106 -4 6-7	E811C	0.5	µg/L	<0.50	
dichloroethane, 1,1-	75-34-3	E811C	0.5	μg/L	<0.50	
dichloroethane, 1,2-	107-06-2	E811C	0.5	μg/L	<0.50	
dichloroethylene, 1,1-	75-35-4	E811C	0.5	μg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-4	E811C	0.5	µg/L	<0.50	
•		'	•	•		

Page : 8 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Volatile Congonic Compounds (QCLot: 133524) - continued	Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
definition of the part 1.5	Volatile Organic Compounds (QCLo	t: 133524) - continued					
destropropage, 1,2 78-87-8 EBTIC 0.5 197L 40.50	dichloroethylene, trans-1,2-	156-60-5	E811C	0.5	µg/L	<0.50	_
destropropylem, cip-1,3- 10081-01-5 E011C 0.5 pgl. 0.50	dichloromethane	75-09-2	E811C	0.5	μg/L	<0.50	_
delaybenzene 10081-02-6 6811C 0.5 pgl. <0.50	dichloropropane, 1,2-	78-87-5	E811C	0.5	μg/L	<0.50	_
ethyberozene 100414 E011C	dichloropropylene, cis-1,3-	10061-01-5	E811C	0.5	μg/L	<0.50	
March Marc	dichloropropylene, trans-1,3-	10061-02-6	E811C	0.5	μg/L	<0.50	_
Symme 100426 E811C 0.5 pgl. 40.50	ethylbenzene	100-41-4	E811C	0.5	μg/L	<0.50	-
Estandinosethane, 1,1,1,2- 830-20-8 E811C 0.5 pgL 40.50	methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	0.5	µg/L	<0.50	
Etrachioroethane, 1,1,2,2- 79-34-5 E611C 0.2 µg/L 0.20 —	styrene	100-42-5	E811C	0.5	μg/L	<0.50	-
Estachionoethylene 127-18-4 E011C 0.5 pgiL 0.50	tetrachloroethane, 1,1,1,2-	630-20-6	E811C	0.5	μg/L	<0.50	-
tobsene 108-88-3 E011C 0.4 µg/L <0.40	tetrachloroethane, 1,1,2,2-	79-34-5	E811C	0.2	µg/L	<0.20	_
Inichioroethane, 1,1,1-	tetrachloroethylene	127-18-4	E811C	0.5	µg/L	<0.50	-
tichloroethane, 1,1.2- 79-00-5 E811C 0.5 μg/L 0.50 — tichloroethylene 79-01-6 E811C 0.5 μg/L 0.50 — tichloroethylene 79-01-6 E811C 0.5 μg/L 0.50 — tichloroethylene 75-00-6 E811C 0.5 μg/L 0.50 — tichloroethylene 75-01-6 E81.VH+F1 100 μg/L 0.5	toluene	108-88-3	E811C	0.4	μg/L	<0.40	_
tichloroethylene 79-01-6 E011C 0.5 μg/L 0.50 — tichloroethylene 75-04-4 E011C 0.5 μg/L 0.50 — tichlorofluoromethane 75-04-4 E011C 0.5 μg/L 0.50 — vinyl chloride 75-01-4 E011C 0.5 μg/L 0.50 — vinyl chloride 75-01-4 E011C 0.5 μg/L 0.50 — vylene, m+p- 178001-23-1 E011C 0.5 μg/L 0.50 — Hydrocarbons (QCLot: 133523) F1 (C6-C10) — E581.VH+F1 100 μg/L 0.50 — Hydrocarbons (QCLot: 133789) EPH (C10-C10) — E001A 250 μg/L 0.50 — EPH (C10-C32) — E001A 250 μg/L 0.50 — Hydrocarbons (QCLot: 133791) F2 (C10-C16) — E001 100 μg/L 0.50 — Hydrocarbons (QCLot: 133791) F3 (C16-C34) — E001 250 μg/L 0.50 — F4 (C34-C50) — E001 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001 250 μg/L 0.50 — F4 (C34-C50) — E001 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 250 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 0.50 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 0.50 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 0.50 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 0.50 μg/L 0.50 — EPH (C10-C10) — E001A 0.50 μg/L 0.50 — EPH (C10-C10) — E001A 0.50 μg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C10) — E001A 0.50 μg/L 0.50 — ED01A 0.50 μg/L 0.50 — ED01A 0.50 μg/L 0.50 — ED01A 0.50 μg/L 0.50 μg/L 0.50 — ED01A 0.50 μg/L 0.50 μg/L 0.50 μg/L 0.50 — ED01A 0.50 μg/L 0.50	trichloroethane, 1,1,1-	71-55-8	E811C	0.5	μg/L	<0.50	
trichioralizaromethane 75-804 E811C 0.5 µg/L 0.50 — vinyl chloride 75-014 E811C 0.4 µg/L 0.40 — xylene, n+p- 179801-23-1 E811C 0.5 µg/L 0.50 — xylene, o- 95-47-8 E811C 0.5 µg/L 0.50 — Hydrocarbons (QCLot: 133523) F1 (06-C10) — E581.VH+F1 100 µg/L 100 — Hydrocarbons (QCLot: 133789) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 133791) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 133791) E7 (C10-C19) — E601 100 µg/L 0.50 — Hydrocarbons (QCLot: 133791) EPH (C10-C19) — E601 100 µg/L 0.50 — Hydrocarbons (QCLot: 133791) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 133791) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 133791) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.50 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 µg/L 0.010 — E601A 0.010 µg/L 0.010 — E601B 0.011 µg/	trichloroethane, 1,1,2-	79-00-5	E811C	0.5	µg/L	<0.50	-
vinjl chloride 75-01-4 E811C 0.4 µpl. <0.40	trichloroethylene	79-01-6	E811C	0.5	µg/L	<0.50	_
xylene, m-p- 178601-23-1 E611C 0.5 µg/L <0.50	trichlorofluoromethane	75-69-4	E811C	0.5	µg/L	<0.50	
Xylene, o- 95-47-8 E611C 0.5 µg/L <0.50	vinyl chloride	75-01-4	E811C	0.4	µg/L	<0.40	
Hydrocarbons (QCLot: 133523) F1 (C8-C10)	xylene, m+p-	179601-23-1	E811C	0.5	µg/L	<0.50	
FT (C8-C10) — E581.VH+F1 100 µg/L <100 — VHw (C8-C10) — E581.VH+F1 100 µg/L <100 — Hydrocarbons (QCLot: 133789) — E601A 250 µg/L <250 — EPH (C10-C19) — E601A 250 µg/L <250 — Hydrocarbons (QCLot: 133791) — E601A 250 µg/L <250 — Hydrocarbons (QCLot: 133791) — E601 100 µg/L <100 — F3 (C16-C34) — E601 250 µg/L <250 — F4 (C34-C50) — E601 250 µg/L <250 — Hydrocarbons (QCLot: 134337) — E601 250 µg/L <250 — Hydrocarbons (QCLot: 134337) — E601A 250 µg/L <250 — F4 (C34-C50) — E601A 250 µg/L <250 µg/L <25	xylene, o-	95-47-6	E811C	0.5	µg/L	<0.50	_
VHw (C8-C10) — E581.VH+F1 100 μg/L <100 — Hydrocarbons (QCLot: 133789) EPH (C10-C19) — E801A 250 μg/L <250	Hydrocarbons (QCLot: 133523)						
Hydrocarbons (QCLot: 133789) EPH (C10-C19) — E801A 250 μg/L <250 — EPH (C10-C32) — E801A 250 μg/L <250 — Hydrocarbons (QCLot: 133791) F2 (C10-C16) 100 μg/L <100 — F3 (C16-C34) — E801 250 μg/L <250 — F4 (C34-C50) — E801 250 μg/L <250 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E801 250 μg/L <250 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E801A 250 μg/L <250 — EPH (C10-C32) — E801A 250 μg/L <250 — Polycyclic Aromatic Hydrocarbons (QCLot: 133790) acenaphthene 83-32-9 E641B 0.01 μg/L <0.010 — acenaphthylene 208-96-8 E641B 0.01 μg/L <0.010 —	F1 (C8-C10)	_	E581.VH+F1	100	μg/L	<100	-
EPH (C10-C19) — E801A 250 μg/L <250 — Hydrocarbons (QCLot: 133791) F2 (C10-C18) — E801 100 μg/L <100 — F3 (C16-C34) — E801 250 μg/L <250 — Hydrocarbons (QCLot: 134337) F4 (C34-C50) — E801 250 μg/L <250 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E801A 250 μg/L <250 μg/L <250 — E801A 250 μg/L <250	VHw (C8-C10)	_	E581.VH+F1	100	µg/L	<100	_
EPH (C19-C32) — E801A 250 µg/L <50 — Hydrocarbons (QCLot: 133791) F2 (C10-C16) — E801 100 µg/L <100 — F3 (C16-C34) — E801 250 µg/L <250 — F4 (C34-C50) — E801 250 µg/L <250 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E801A 250 µg/L <250 — EPH (C10-C19) — E801A 250 µg/L <250 — POlycyclic Aromatic Hydrocarbons (QCLot: 133790) acenaphthene 83-32-9 E841B 0.01 µg/L <0.010 — acenaphthylene 208-96-8 E841B 0.01 µg/L <0.010 — ■	Hydrocarbons (QCLot: 133789)						
Hydrocarbons (QCLot: 133791) F2 (C10-C16) — E801 100 µg/L <100 — F3 (C16-C34) — E801 250 µg/L <250 — F4 (C34-C50) — E801A 250 µg/L <250 — F4 (C10-C19) — E801A 250 µg/L <250 — F4 (C10-C19) — E801A 250 µg/L <250 — F801A 250 µg/L <250 µ	EPH (C10-C19)	_	E001A	250	µg/L	<250	
F2 (C10-C16) — E601 100 µg/L <100 — F3 (C16-C34) — E601 250 µg/L <250 — F4 (C34-C50) — E601 250 µg/L <250 — F4 (C34-C50) — E601 250 µg/L <250 — F4 (C34-C50) — E601 250 µg/L <250 — F4 (C10-C19) — E601A 250 µg/L <250 — E601A 250 µg/L <250 — E601A 250 µg/L <250 — F601A 250 µg/L <250	EPH (C19-C32)	_	E001A	250	µg/L	<250	-
F3 (C16-C34) — E601 — 250 µg/L <250 — F4 (C34-C50) — E601 — 250 µg/L <250 — F4 (C34-C50) — E601 — 250 µg/L <250 — F4 (C34-C50) — E601A	Hydrocarbons (QCLot: 133791)						
F4 (C34-C50) — E601 250 μg/L <250 — Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 μg/L <250 — EPH (C19-C32) — E601A 250 μg/L <250 — Polycyclic Aromatic Hydrocarbons (QCLot: 133790) acenaphthene 83-32-9 E641B 0.01 μg/L <0.010 — acenaphthylene 208-96-8 E641B 0.01 μg/L <0.010 —	F2 (C10-C16)	_	E601	100	µg/L	<100	
Hydrocarbons (QCLot: 134337) EPH (C10-C19) — E601A 250 μg/L <250	F3 (C16-C34)	_	E801	250	μg/L	<250	-
EPH (C10-C19) — E601A 250 μg/L <250	F4 (C34-C50)	_	E601	250	µg/L	<250	
EPH (C19-C32) — E601A 250 μg/L <250 — Polycyclic Aromatic Hydrocarbons (QCLot: 133790) acenaphthene 83-32-9 E641B 0.01 μg/L <0.010 — acenaphthylene 208-96-8 E641B 0.01 μg/L <0.010 —	Hydrocarbons (QCLot: 134337)						
Polycyclic Aromatic Hydrocarbons (QCLot: 133790) acenaphthene 83-32-9 E641B 0.01 μg/L <0.010	EPH (C10-C19)	_	E601A	250	µg/L	<250	
acenaphthene 83-32-9 E641B 0.01 μg/L <0.010	EPH (C19-C32)	_	E601A	250	µg/L	<250	
acenaphthylene 208-96-8 E641B 0.01 µg/L <0.010							
	acenaphthene			0.01	µg/L		
acridine 280-94-8 E641B 0.01 μg/L <0.010 —	acenaphthylene			0.01	µg/L		-
	acridine	260-94-6	E641B	0.01	μg/L	<0.010	_

Page : 9 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Page : 10 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbor	ns (QCLot: 134340) - contin	ued				
chloronaphthalene, 2-	91-58-7	E641B	0.01	μg/L	<0.010	
chrysene	218-01-9	E641B	0.01	μg/L	<0.010	
dibenz(a,h)anthracene	53-70-3	E641B	0.005	μg/L	<0.0050	
dirnethylbenz(a)anthracene, 7,12-	57-97-8	E641B	0.01	μg/L	<0.010	
fluoranthene	206-44-0	E641B	0.01	μg/L	<0.010	
fluorene	86-73-7	E641B	0.01	μg/L	<0.010	
indeno(1,2,3-c,d)pyrene	193-39-5	E641B	0.01	μg/L	<0.010	
methylcholanthrene, 3-	56-49-5	E641B	0.01	μg/L	<0.010	
methylnaphthalene, 1-	90-12-0	E641B	0.01	μg/L	<0.010	
methylnaphthalene, 2-	91-57-8	E641B	0.01	μg/L	<0.010	
naphthalene	91-20-3	E641B	0.05	μg/L	<0.050	
nitropyrene, 4-	57835-92-4	E641B	0.1	μg/L	<0.10	
perylene	198-55-0	E641B	0.01	μg/L	<0.010	
phenanthrene	85-01-8	E641B	0.02	µg/L	<0.020	
pyrene	129-00-0	E641B	0.01	μg/L	<0.010	
quinoline	6027-02-7	E641B	0.05	μg/L	<0.050	
Phenolics (QCLot: 133407)						
chlorophenol, 2-	95-57-8	E651A	0.05	μg/L	<0.050	-
chlorophenol, 3-	108-43-0	E651A	0.05	μg/L	<0.050	
chlorophenol, 4-	106-48-9	E651A	0.05	μg/L	<0.050	
dichlorophenol, 2,3-	576-24-9	E651A	0.05	μg/L	<0.050	
dichlorophenol, 2,4- + 2,5-	_	E651A	0.05	µg/L	<0.050	_
dichlorophenol, 2,6-	87-65-0	E651A	0.05	µg/L	<0.050	_
dichlorophenol, 3,4-	95-77-2	E651A	0.05	μg/L	<0.050	_
dichlorophenol, 3,5-	591-35-5	E651A	0.05	μg/L	<0.050	
methylphenol, 4-chloro-3-	59-50-7	E651A	0.1	μg/L	<0.10	_
pentachlorophenol [PCP]	87-86-5	E651A	0.1	µg/L	<0.10	-
tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.1	μg/L	<0.10	
tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.1	µg/L	<0.10	_
tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.1	μg/L	<0.10	
trichlorophenol, 2,3,4-	15950-66-0	E651A	0.1	μg/L	<0.10	
trichlorophenol, 2,3,5-	933-78-8	E651A	0.1	µg/L	<0.10	
trichlorophenol, 2,3,6-	933-75-5	E651A	0.1	μg/L	<0.10	
trichlorophenol, 2,4,5-	95-95-4	E651A	0.1	μg/L	<0.10	
trichlorophenol, 2,4,6-	88-06-2	E651A	0.1	μg/L	<0.10	
trichlorophenol, 3,4,5-	609-19-8	E651A	0.1	μg/L	<0.10	
-			-			

Page : 11 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Page : 12 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Physical Tests (QCLot: 133826)	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
Private Color 13826						Spike	Recovery (%)	Recovery	Limits (%)	
Continue of Nutrients (OCLot: 133629) Notes 16887-00-6 E205.CC 0.5 mg/L 100 mg/L 101 00.0 110	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Continue of Nutrients (OCLot: 133629) Notes 16887-00-6 E205.CC 0.5 mg/L 100 mg/L 101 00.0 110	Physical Tests (QCLot: 133826)									
Minion and Nutrients (OCLot: 133919)	pH	_	E108	_	pH units	7 pH units	100	98.0	102	
Minion and Nutrients (OCLot: 133919)										
Non-Chlorinated Phenolics (QCLot: 133919) Non-Chlorinated Phenolics (QCLot: 133407) Intelligent Phenolics (QCLot: 133408) Intelligent Phenolics (QCLot: 133407) Intelligent Phenolics (Q	Anions and Nutrients (QCLot: 133829)									
Non-Chlorinated Phenolics (QCLot: 133407) 105-67-4 E851A 0.2 ught 2 ught 96.0 110 13	chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
	Anions and Nutrients (QCLot: 133919)									
Interhyphenol, 2-4	chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	102	90.0	110	_
Interhyphenol, 2-4										
Best	Non-Chlorinated Phenolics (QCLot: 133407)									
108-394 E851A 0.2 pgl. 2 pgl. 71.5 50.0 130	dimethylphenol, 2,4-									_
108-44-5 108-44-5 108-44-5 108-44-5 108-44-5 108-44-5 108-46-5	methylphenol, 2-									_
Dissolved Metals (QCLot: 133469) Dissolved Metals (QCLot: 134669) Dissolved Meta	methylphenol, 3-					2 μg/L	71.5		130	_
Dissolved Metals (QCLot: 133469) Aurinum, dissolved 7429-00-5 E421 0.001 mg/L 2 mg/L 09.0 80.0 120	methylphenol, 4-					2 μg/L				-
Aurninum, dissolved 7429-05 EK21 0.001 mg/L 2 mg/L 90.0 80.0 120 — filmony, dissolved 7440-38-0 EK21 0.0001 mg/L 1 mg/L 108 80.0 120 — filmony, dissolved 7440-38-2 EK21 0.0001 mg/L 1 mg/L 104 80.0 120 — filmony, dissolved 7440-39-3 EK21 0.0001 mg/L 0.25 mg/L 100 80.0 120 — filmony, dissolved 7440-41-7 EK21 0.00002 mg/L 0.1 mg/L 90.9 80.0 120 — filmony, dissolved 7440-80-9 EK21 0.00005 mg/L 1 mg/L 101 80.0 120 — filmony, dissolved 7440-80-9 EK21 0.00005 mg/L 1 mg/L 101 80.0 120 — filmony, dissolved 7440-43-8 EK21 0.000 mg/L 1 mg/L 111 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.1 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.1 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00001 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7440-48-4 EK21 0.00001 mg/L 0.5 mg/L 98.0 120 — filmony, dissolved 7440-48-4 EK21 0.00001 mg/L 0.5 mg/L 98.0 120 — filmony, dissolved 7440-80-8 EK21 0.00001 mg/L 0.5 mg/L 97.9 80.0 120 — filmony, dissolved 7440-80-8 EK21 0.0001 mg/L 0.5 mg/L 97.9 80.0 120 — filmony, dissolved 7439-89-8 EK21 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 103 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 0.5 mg/L 103 80.0 120 — filmony, diss	phenol	108-95-2	E651A	0.2	μg/L	2 μg/L	106	50.0	130	_
Aurninum, dissolved 7429-05 EK21 0.001 mg/L 2 mg/L 90.0 80.0 120 — filmony, dissolved 7440-38-0 EK21 0.0001 mg/L 1 mg/L 108 80.0 120 — filmony, dissolved 7440-38-2 EK21 0.0001 mg/L 1 mg/L 104 80.0 120 — filmony, dissolved 7440-39-3 EK21 0.0001 mg/L 0.25 mg/L 100 80.0 120 — filmony, dissolved 7440-41-7 EK21 0.00002 mg/L 0.1 mg/L 90.9 80.0 120 — filmony, dissolved 7440-80-9 EK21 0.00005 mg/L 1 mg/L 101 80.0 120 — filmony, dissolved 7440-80-9 EK21 0.00005 mg/L 1 mg/L 101 80.0 120 — filmony, dissolved 7440-43-8 EK21 0.000 mg/L 1 mg/L 111 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.1 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.1 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00005 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7440-43-9 EK21 0.00001 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7440-48-4 EK21 0.00001 mg/L 0.5 mg/L 98.0 120 — filmony, dissolved 7440-48-4 EK21 0.00001 mg/L 0.5 mg/L 98.0 120 — filmony, dissolved 7440-80-8 EK21 0.00001 mg/L 0.5 mg/L 97.9 80.0 120 — filmony, dissolved 7440-80-8 EK21 0.0001 mg/L 0.5 mg/L 97.9 80.0 120 — filmony, dissolved 7439-89-8 EK21 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 98.7 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0005 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 101 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 102 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 103 80.0 120 — filmony, dissolved 7439-80-5 EK21 0.0001 mg/L 0.5 mg/L 0.5 mg/L 103 80.0 120 — filmony, diss										
Infimony, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 108 80.0 120 — reservic, dissolved 7440-38-2 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — reservic, dissolved 7440-38-3 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — reservicing, dissolved 7440-47-7 E421 0.00002 mg/L 0.1 mg/L 101 80.0 120 — reservicing, dissolved 7440-88-9 E421 0.00005 mg/L 1 mg/L 101 80.0 120 — reservicing fissolved 7440-48-9 E421 0.00005 mg/L 1 mg/L 101 80.0 120 — reservicing fissolved 7440-89-8 E421 0.00005 mg/L 0.01 mg/L 101 80.0 120 — reservicing fissolved 7440-89-8 E421 0.00005 mg/L 50 mg/L 102 80.0 120 — reservicing fissolved 7440-89-8 E421 0.00001 mg/L 0.05 mg/L 94.4 80.0 120 — reservicing fissolved 7440-89-8 E421 0.00001 mg/L 0.25 mg/L 100 80.0 120 — reservicing fissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 94.4 80.0 120 — reservicing fissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 94.4 80.0 120 — reservicing fissolved 7440-89-8 E421 0.0001 mg/L 0.25 mg/L 96.5 80.0 120 — reservicing fissolved 7439-89-8 E421 0.00005 mg/L 0.25 mg/L 97.9 80.0 120 — reservicing fissolved 7439-89-8 E421 0.00005 mg/L 0.25 mg/L 100 80.0 120 — reservicing fissolved 7439-89-8 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — reservicing fissolved 7439-89-8 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — reservicing fissolved 7439-89-8 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — reservicing fissolved 7439-89-8 E421 0.0005 mg/L 0.0	Dissolved Metals (QCLot: 133469)									
Frenic, dissolved 7440-38-2 F421 0.0001 mg/L 1 mg/L 104 80.0 120	aluminum, dissolved				mg/L	2 mg/L	0.99			_
arium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 eryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.9 80.0 120 eryllium, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 101 80.0 120 eryllium, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 111 80.0 120 eryllium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 102 80.0 120 eryllium, dissolved 7440-43-9 E421 0.00005 mg/L 0.5 mg/L 102 80.0 120 eryllium, dissolved 7440-43-9 E421 0.00005 mg/L 0.5 mg/L 102 80.0 120 eryllium, dissolved 7440-43-4 E421 0.00001 mg/L 0.5 mg/L 102 80.0 120 eryllium, dissolved 7440-43-4 E421 0.00001 mg/L 0.5 mg/L 102 80.0 120 eryllium, dissolved 7440-43-4 E421 0.00001 mg/L 0.5 mg/L 100 80.0 120 eryllium, dissolved 7440-43-4 E421 0.00001 mg/L 0.5 mg/L 100 80.0 120 eryllium, dissolved 7439-88-6 E421 0.00001 mg/L 0.5 mg/L 100 80.0 120 eryllium, dissolved 7439-88-6 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 105 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 101 80.0 120 eryllium, dissolved 7439-88-6 E421 0.0001 mg/L 0.5 mg/L 102 80.0 120 eryllium, dissolved 102 80.0 120 eryllium, dissolved 102 80.0 120 eryllium, diss	antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	108	80.0	120	_
reyllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.9 80.0 120	arsenic, dissolved				mg/L	1 mg/L	104	0.08	120	_
ismuth, dissolved 7440-89-9 E421 0.00005 mg/L 1 mg/L 101 80.0 120	barium, dissolved				mg/L	0.25 mg/L	100	80.0	120	_
oron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 111 80.0 120 — admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 102 80.0 120 — admium, dissolved 7440-46-2 E421 0.05 mg/L 50 mg/L 102 80.0 120 — asium, dissolved 7440-48-4 E421 0.00001 mg/L 0.05 mg/L 94.4 80.0 120 — abalt, dissolved 7440-50-8 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — abalt, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 — abalt, dissolved 7439-89-8 E421 0.01 mg/L 1 mg/L 99.5 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.55 mg/L 105 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.55 mg/L 105 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 105 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 105 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 105 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-8 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 7439-89-7 E421 0.0005 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 80.0005 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 80.0005 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — abalt, dissolved 80.0005 mg/L 0.25 mg/L 0	beryllium, dissolved				mg/L	0.1 mg/L	99.9	80.0	120	_
admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 102 80.0 120 — alcium, dissolved 7440-70-2 E421 0.005 mg/L 50 mg/L 102 80.0 120 — alcium, dissolved 7440-48-2 E421 0.00001 mg/L 0.05 mg/L 102 80.0 120 — alcium, dissolved 7440-48-4 E421 0.00001 mg/L 0.25 mg/L 100 80.0 120 — alcium, dissolved 7440-88-4 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — alcium, dissolved 7440-60-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 — alcium, dissolved 7439-89-6 E421 0.0005 mg/L 1 mg/L 99.5 80.0 120 — alcium, dissolved 7439-89-6 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — alcium, dissolved 7439-89-6 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — alcium, dissolved 7439-89-6 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — alcium, dissolved 7439-89-6 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — alcium, dissolved 7439-89-6 E421 0.0005 mg/L 0.25 mg/L 101 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — alcium, dissolved 7439-89-7 E421 0.00005 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — alci	bismuth, dissolved	7440-69-9	E421		_	1 mg/L	101	0.08	120	_
alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 102 80.0 120 esium, dissolved 7440-48-2 E421 0.00001 mg/L 0.05 mg/L 94.4 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 on, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 99.5 80.0 120 ead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 thium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 105 80.0 120 magnesium, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 magnesium, dissolved 7439-85-5 E421 0.005 mg/L 50 mg/L 101 80.0 120 manganese, dissolved 7439-85-6 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 manganese, dissolved 7439-87-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-87-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-88-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-88-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-88-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-88-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 molybdenum, dissolved 7439-88-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120	boron, dissolved					1 mg/L	111	80.0		_
esium, dissolved 7440-48-2 E421 0.00001 mg/L 0.05 mg/L 94.4 80.0 120 — obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 — on, dissolved 7439-88-6 E421 0.01 mg/L 1 mg/L 99.5 80.0 120 — ead, dissolved 7439-93-2 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 — othium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — onagnesium, dissolved 7439-95-4 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — onagnesium, dissolved 7439-96-5 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — onagnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — onagnese, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 0.25 mg/L 103 80.0 120 — onagnese dissolved 7439-98-7 E421 0.0001 mg/L 0.0001 mg/L 0.25 mg/L 0.25 mg/L 0.25 mg/L 0.25 mg/L 0.25 m	cadmium, dissolved	7440-43-9	E421		mg/L	0.1 mg/L	102	80.0	120	_
obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 100 80.0 120 — opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 — on, dissolved 7439-89-6 E421 0.001 mg/L 1 mg/L 99.5 80.0 120 — ead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — othium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — onagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 101 80.0 120 — onagnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 — onagnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 101 80.0 120 — onagnesium, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnesium, dissolved 7439-98-7 E421 0.0001 mg/L 0.25 mg/L 103 80.0 120 — onagnesium, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — onagnesium, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — onagnesium, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 — onagnesium, dissolved 103 80.0 120 — onagn	calcium, dissolved	7440-70-2	E421		mg/L	50 mg/L	102	80.0	120	_
opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.9 80.0 120 — ead, dissolved 7439-89-6 E421 0.0006 mg/L 0.55 mg/L 105 80.0 120 — ead, dissolved 7439-93-2 E421 0.0006 mg/L 0.25 mg/L 105 80.0 120 — ead, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — ead, dissolved 7439-95-4 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — ead, dissolved 7439-95-5 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — ead, dissolved 7439-96-5 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — ead, dissolved 7439-98-5 E421 0.005 mg/L 0.25 mg/L 101 80.0 120 — ead, dissolved 120 —	cesium, dissolved				mg/L	0.05 mg/L	94.4	80.0	120	_
on, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 99.5 80.0 120 — ead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120 — thium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 101 80.0 120 — nanganese, dissolved 7439-98-5 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — nolybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 103 80.0 120 —	cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	_
ead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 105 80.0 120 — thium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 101 80.0 120 — nanganese, dissolved 7439-98-5 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 —	copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	97.9	80.0	120	_
thium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.7 80.0 120 — naggnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 101 80.0 120 — nanganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 —	iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	99.5	80.0	120	_
nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 101 80.0 120 — nanganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 — nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120 —	lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	105	0.08	120	-
nanganese, dissolved 7439-98-5 E421 0.0001 mg/L 0.25 mg/L 112 80.0 120 nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120	lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	93.7	0.08	120	_
nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 103 80.0 120	magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	101	0.08	120	-
	manganese, dissolved	7439-98-5	E421	0.0001	mg/L	0.25 mg/L	112	0.08	120	_
ickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 97.7 80.0 120	molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	103	80.0	120	_
	nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.7	80.0	120	_

Page : 13 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Dissolved Metals (QCLot: 133469) - continue									
phosphorus, dissolved	7723-14-0	E421	0.05	mg/L	10 mg/L	101	70.0	130	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	101	0.08	120	
rubidium, dissolved	7440-17-7	E421	0.0002	mg/L	0.1 mg/L	102	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	105	0.08	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	102	0.08	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	99.4	80.0	120	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	50 mg/L	111	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	103	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	107	80.0	120	
tellurium, dissolved	13494-80-9	E421	0.0002	mg/L	0.1 mg/L	105	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	105	80.0	120	
thorium, dissolved	7440-29-1	E421	0.0001	mg/L	0.1 mg/L	101	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	99.2	80.0	120	
itanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	90.3	80.0	120	
ungsten, dissolved	7440-33-7	E421	0.0001	mg/L	0.1 mg/L	103	80.0	120	
ranium, dissolved	7440-61-1		0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.5	80.0	120	
zinc, dissolved	7440-66-6		0.001	mg/L	0.5 mg/L	102	80.0	120	
zirconium, dissolved	7440-67-7		0.0002	mg/L	0.1 mg/L	97.5	80.0	120	
	7710-01-7		0.0002		U.I IIIg/L	61.5	00.0	120	
Dissolved Metals (QCLot: 133470)	7440.47.2	E421.Cr-L	0.0001	mg/L	0.25 mg/L	95.4	80.0	120	
mercury, dissolved	7439-97-6		0.000005		_				
nercury, dissolved	7438-87-0	2009	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Volatile Organic Compounds (QCLot: 133524 benzene	4) 71-43-2	E811C	0.5	μg/L	400	440	70.0	420	
	75-27-4		0.5	μg/L	100 μg/L	113 126	70.0 70.0	130 130	_
oromodichloromethane	75-25-2		0.5		100 μg/L				-
oromoform				μg/L	100 μg/L	83.2	70.0	130	-
carbon tetrachloride	56-23-5 108-90-7		0.5 0.5	µg/L	100 μg/L	111	70.0	130	
chlorobenzene				µg/L	100 μg/L	115	70.0	130	-
chloroethane	75-00-3		0.5	μg/L	100 μg/L	86.1	60.0	140	
chloroform	67-66-3		0.5	μg/L	100 μg/L	129	70.0	130	
chloromethane	74-87-3		0.5	μg/L	100 μg/L	60.8	60.0	140	
dibromochloromethane	124-48-1		0.5	μg/L	100 μg/L	87.2	70.0	130	
dichlorobenzene, 1,2-	95-50-1		0.5	μg/L	100 μg/L	108	70.0	130	
dichlorobenzene, 1,3-	541-73-1	E611C	0.5	µg/L	100 μg/L	110	70.0	130	
dichlorobenzene, 1,4-	106-46-7		0.5	μg/L	100 μg/L	113	70.0	130	
dichloroethane, 1,1-	75-34-3	E611C	0.5	μg/L	100 μg/L	114	70.0	130	

Page : 14 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Volatile Organic Compounds (QCLot: 133524) - continued											
dichloroethane, 1,2- 107-08-2	E611C	0.5	μg/L	100 μg/L	114	70.0	130				
dichloroethylene, 1,1- 75-35-4	E611C	0.5	μg/L	100 μg/L	116	70.0	130				
dichloroethylene, cis-1,2-	E611C	0.5	μg/L	100 μg/L	121	70.0	130				
dichloroethylene, trans-1,2- 156-60-5	E611C	0.5	μg/L	100 μg/L	124	70.0	130				
dichloromethane 75-09-2	E611C	0.5	μg/L	100 μg/L	117	70.0	130				
dichloropropane, 1,2- 78-87-5	E611C	0.5	μg/L	100 μg/L	119	70.0	130				
dichloropropylene, cis-1,3- 10061-01-5	E611C	0.5	μg/L	100 μg/L	95.3	70.0	130				
dichloropropylene, trans-1,3- 10061-02-6	E611C	0.5	μg/L	100 μg/L	# 62.6	70.0	130	LCS-ND			
ethylbenzene 100-41-4	E611C	0.5	μg/L	100 μg/L	110	70.0	130				
methyl-tert-butyl ether [MTBE] 1634-04-4	E611C	0.5	μg/L	100 μg/L	108	70.0	130				
styrene 100-42-5	E611C	0.5	μg/L	100 μg/L	104	70.0	130				
tetrachloroethane, 1,1,1,2- 630-20-6	E611C	0.5	μg/L	100 µg/L	110	70.0	130				
tetrachloroethane, 1,1,2,2- 79-34-5	E611C	0.2	μg/L	100 μg/L	102	70.0	130				
tetrachloroethylene 127-18-4	E611C	0.5	μg/L	100 μg/L	102	70.0	130				
toluene 108-88-3	E611C	0.4	μg/L	100 µg/L	98.9	70.0	130				
trichloroethane, 1,1,1- 71-55-6	E611C	0.5	μg/L	100 μg/L	104	70.0	130				
trichloroethane, 1,1,2- 79-00-3	E611C	0.5	μg/L	100 µg/L	101	70.0	130				
trichloroethylene 79-01-6	E611C	0.5	μg/L	100 µg/L	120	70.0	130				
trichlorofluoromethane 75-89-4	E611C	0.5	μg/L	100 μg/L	112	60.0	140				
vinyl chloride 75-01-4	E611C	0.4	μg/L	100 µg/L	62.4	60.0	140				
xylene, m+p- 179801-23-1	E611C	0.5	μg/L	200 μg/L	112	70.0	130				
	E611C	0.5	μg/L	100 μg/L	107	70.0	130	_			
Hydrocarbons (QCLot: 133523)											
F1 (C8-C10) —	E581.VH+F1	100	μg/L	6310 µg/L	94.2	70.0	130	-			
VHw (C8-C10) —	E581.VH+F1	100	μg/L	6310 µg/L	88.8	70.0	130				
Hydrocarbons (QCLot: 133789)											
EPH (C10-C19) —	E801A	250	μg/L	6491 µg/L	118	70.0	130				
EPH (C19-C32) —	E601A	250	μg/L	3363 µg/L	116	70.0	130	-			
Hydrocarbons (QCLot: 133791)											
F2 (C10-C18)	E601	100	μg/L	3538 µg/L	119	70.0	130	-			
F3 (C18-C34) —	E601	250	μg/L	7053 µg/L	115	70.0	130				
F4 (C34-C50) —	E601	250	μg/L	5051 μg/L	120	70.0	130	_			
Hydrocarbons (QCLot: 134337)											
EPH (C10-C19) —	E601A	250	μg/L	6491 µg/L	126	70.0	130				
EPH (C19-C32) —	E601A	250	μg/L	3363 µg/L	122	70.0	130				

Page : 15 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons (C									
acenaphthene	83-32-9		0.01	μg/L	0.5 μg/L	111	60.0	130	-
acenaphthylene	208-96-8		0.01	μg/L	0.5 µg/L	113	60.0	130	
acridine	260-94-6		0.01	μg/L	0.5 μg/L	118	60.0	130	
anthracene	120-12-7		0.01	μg/L	0.5 μg/L	123	60.0	130	
anthraquinone, 9,10-	84-65-1	E641B	0.05	μg/L	0.5 μg/L	126	60.0	130	
benz(a)anthracene	56-55-3	E641B	0.01	μg/L	0.5 μg/L	120	60.0	130	
benzo(a)pyrene	50-32-8	E641B	0.005	μg/L	0.5 µg/L	114	60.0	130	
benzo(b+j)fluoranthene	_	E641B	0.01	μg/L	0.5 µg/L	106	60.0	130	
benzo(b+j+k)fluoranthene	_	E641B	_	μg/L	1 μg/L	110	60.0	130	
benzo(e)pyrene	192-97-2	E641B	0.01	μg/L	0.5 µg/L	95.3	60.0	130	
benzo(g,h,i)perylene	191-24-2	E641B	0.01	μg/L	0.5 µg/L	107	60.0	130	
benzo(k)fluoranthene	207-08-9	E641B	0.01	μg/L	0.5 μg/L	115	60.0	130	
chloronaphthalene, 2-	91-58-7	E641B	0.01	μg/L	0.5 μg/L	115	60.0	130	
chrysene	218-01-9	E641B	0.01	μg/L	0.5 μg/L	113	60.0	130	
dibenz(a,h)anthracene	53-70-3	E641B	0.005	μg/L	0.5 μg/L	116	60.0	130	
dimethylbenz(a)anthracene, 7,12-	57-97-8	E641B	0.01	μg/L	0.5 μg/L	0.89	40.0	130	
fluoranthene	206-44-0	E641B	0.01	μg/L	0.5 μg/L	118	60.0	130	
fluorene	86-73-7	E641B	0.01	μg/L	0.5 μg/L	117	60.0	130	
indeno(1,2,3-c,d)pyrene	193-39-5	E641B	0.01	μg/L	0.5 µg/L	116	60.0	130	
methylcholanthrene, 3-	56-49-5	E641B	0.01	μg/L	0.5 μg/L	128	50.0	130	
methylnaphthalene, 1-	90-12-0	E641B	0.01	μg/L	0.5 µg/L	107	60.0	130	
methylnaphthalene, 2-	91-57-6	E641B	0.01	μg/L	0.5 µg/L	104	60.0	130	
naphthalene	91-20-3	E641B	0.05	μg/L	0.5 µg/L	103	50.0	130	
nitropyrene, 4-	57835-92-4	E641B	0.1	μg/L	0.5 µg/L	# 154	50.0	140	LCS-ND
perylene	198-55-0	E641B	0.01	μg/L	0.5 µg/L	111	60.0	130	
phenanthrene	85-01-8	E641B	0.02	μg/L	0.5 µg/L	118	60.0	130	
pyrene	129-00-0	E641B	0.01	μg/L	0.5 µg/L	122	60.0	130	
quinoline	6027-02-7	E641B	0.05	μg/L	0.5 μg/L	114	60.0	130	
Polycyclic Aromatic Hydrocarbons (0	OCLot: 134340)								1
acenaphthene	83-32-9	E641B	0.01	μg/L	0.5 μg/L	122	60.0	130	
acenaphthylene	208-96-8	E641B	0.01	μg/L	0.5 μg/L	126	60.0	130	
acridine	260-94-6	E641B	0.01	μg/L	0.5 μg/L	108	60.0	130	
anthracene	120-12-7	E641B	0.01	μg/L	0.5 µg/L	113	60.0	130	
anthraquinone, 9,10-	84-65-1	E641B	0.05	μg/L	0.5 μg/L	103	60.0	130	
benz(a)anthracene	56-55-3	E641B	0.01	μg/L	0.5 μg/L	130	60.0	130	
benzo(a)pyrene	50-32-8	E641B	0.005	μg/L	0.5 µg/L	112	60.0	130	
benzo(b+j)fluoranthene	_	E641B	0.01	μg/L	0.5 μg/L	113	60.0	130	
		l	1 1						I

Page : 16 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Polycyclic Aromatic Hydrocaribons (CCL obt 134340) - continued	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
Polysycic Aromatic Hydrocarbons (QCLot: 134340) - continued						Spike	Recovery (%)	Recovery	Limits (%)		
Demosicily-lythicrarthere	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Exercis Symptom 102-47-2 EAH B											
berace(g.h.)pseyform 191-24-2 E8418 0.01 pgf.	benzo(b+j+k)fluoranthene					1 μg/L	114	60.0	130		
beroodlythcorathene 207-86-9 EM18 0.01 pgt. 0.5 μgt. 116 60.0 130	benzo(e)pyrene	192-97-2	E641B	0.01	μg/L	0.5 µg/L	100	60.0	130		
historiasphthalene, 2- chysine 218-01-8 (EM1B) 0.01 pgt. 0.5 pgt. 119 0.00 130 130 chysine 218-01-8 (EM1B) 0.01 pgt. 0.5 pgt. 127 0.00 130 130 christoriasphthalene, 7- 127 0.00 130 christoriasphthalene, 7- 127 0.00 130 christoriasphthalene, 7- 127 0.00 130 christoriasphthalene, 7- 128 0.00 130 christoriasphthalene, 7- 129 0.00 130 chr	benzo(g,h,i)perylene	191-24-2	E641B	0.01	μg/L	0.5 µg/L	120	60.0	130		
chrysone 218-01-9 EM1B 0.01 ppt 0.5 ppt 123 000 130 diberdal-) printense	benzo(k)fluoranthene	207-08-9	E641B	0.01	μg/L	0.5 µg/L	116	60.0	130		
deenquity-instruction	chloronaphthalene, 2-	91-58-7	E641B	0.01	μg/L	0.5 µg/L	119	60.0	130		
dimetrylbersc(a)anthracene, 7,12- 57-97-6 E6418 0.01 μgl. 0.5 μgl. 70.8 40.0 130 fluoranthene 200-44-0 E6418 0.01 μgl. 0.5 μgl. 128 60.0 130 fluorance 88-73-7 E6418 0.01 μgl. 0.5 μgl. 107 60.0 130 indenct(1,2.3 c.d)pyrene 193-95. E6418 0.01 μgl. 0.5 μgl. 110 60.0 130 methylosphthalene, 3- 66-46. E6418 0.01 μgl. 0.5 μgl. 110 60.0 130 methylosphthalene, 2- 91-57.4 E6418 0.01 μgl. 0.5 μgl. 117 60.0 130 mitopyrene, 4- 57838-92.4 E6418 0.05 μgl. 0.5 μgl. 111 60.0 130 pervisee 196-50 E6418 0.01 μgl. 0.5 μgl. 111 60.0 130 persanthrene 186-50 E6418 0.01 μgl. 0.5	chrysene	218-01-9	E641B	0.01	μg/L	0.5 µg/L	123	60.0	130		
fluoranthene 208-44-0 [B941B	dibenz(a,h)anthracene	53-70-3	E641B	0.005	μg/L	0.5 µg/L	127	60.0	130		
fluorene 88-73-7 EM1B 0.01 µg/L 0.5 µg/L 107 0.0.0 130 indent (2.3-cd)pyrene 193-39-6 EM1B 0.01 µg/L 0.5 µg/L 120 00.0 130 indent (2.3-cd)pyrene 193-39-6 EM1B 0.01 µg/L 0.5 µg/L 120 00.0 130 methy/naphthalene, 3- 68-04-5 EM1B 0.01 µg/L 0.5 µg/L 110 50.0 130 methy/naphthalene, 1- 90-120 EM1B 0.01 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene, 2- 91-67-6 EM1B 0.01 µg/L 0.5 µg/L 117 00.0 130 indent/pyraphthalene, 2- 91-67-6 EM1B 0.05 µg/L 0.5 µg/L 116 50.0 130 indent/pyraphthalene 91-20 EM1B 0.05 µg/L 0.5 µg/L 116 50.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 116 50.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 116 50.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 110 00.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 110 00.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 110 00.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 130 00.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene 91-20 EM1B 0.01 µg/L 0.5 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene 91-20 EM1B 0.05 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene 91-20 EM1B 0.05 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene 91-20 EM1B 0.05 µg/L 0.5 µg/L 120 00.0 130 indent/pyraphthalene 91-20 EM1B 0.05 µg/L 0.5 µg/L 91/T 50.0 130 indent/pyraphthalene, 2- em1B 0.05 µg/L 2 µg/L 91/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 91/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 90/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 90/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 90/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 90/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.05 µg/L 2 µg/L 90/T 50.0 130 indent/pyraphthalene, 2- EM1B 0.0 130 indent/pyraphthalene, 2- Pyraphthalene, 2- P	dimethylbenz(a)anthracene, 7,12-	57-97-8	E641B	0.01	μg/L	0.5 μg/L	70.6	40.0	130		
indeno(1,2,3-c,d)pyrene 193-36-5 E841B 0.01 µg/L 0.5 µg/L 128 60.0 130 methylosphthalene, 3- 5646-5 E841B 0.01 µg/L 0.5 µg/L 110 50.0 130 methylosphthalene, 1- 90-12-0 E841B 0.01 µg/L 0.5 µg/L 110 50.0 130 methylosphthalene, 2- 91-57-6 E841B 0.01 µg/L 0.5 µg/L 117 60.0 130 methylosphthalene, 2- 91-57-8 E841B 0.05 µg/L 0.5 µg/L 117 60.0 130 methylosphthalene 91-20-3 E841B 0.05 µg/L 0.5 µg/L 116 50.0 130 mitropyrene, 4- 5783-92-4 E841B 0.01 µg/L 0.5 µg/L 116 50.0 130 mitropyrene, 4- 198-85-6 E841B 0.01 µg/L 0.5 µg/L 111 60.0 130 mitropyrene, 4- 198-85-6 E841B 0.01 µg/L 0.5 µg/L 111 60.0 130 mitropyrene, 4- 198-85-6 E841B 0.01 µg/L 0.5 µg/L 110 60.0 130 mitropyrene 8 50-18 E841B 0.01 µg/L 0.5 µg/L 110 60.0 130 mitropyrene 6 198-85-6 E841B 0.01 µg/L 0.5 µg/L 110 60.0 130 mitropyrene 6 120-00 E841B 0.01 µg/L 0.5 µg/L 120 60.0 130 mitropyrene 6 6027-02-7 E841B 0.05 µg/L 0.5 µg/L 120 60.0 130 mitropyrene 6 6027-02-7 E841B 0.05 µg/L 0.5 µg/L 120 60.0 130 mitropyreno, 2- 60-18 600-18	fluoranthene	206-44-0	E641B	0.01	μg/L	0.5 µg/L	128	60.0	130		
methylchotanthrene, 3-	fluorene	86-73-7	E641B	0.01	μg/L	0.5 µg/L	107	60.0	130		
methylnaphthalene, 1- methylnaphthalene, 2-	indeno(1,2,3-c,d)pyrene	193-39-5	E641B	0.01	μg/L	0.5 µg/L	126	60.0	130		
methylnaphthalene, 2- 91-57-8 E841B 0.01 μgl. 0.5 μgl. 117 00.0 130 naphthalene 91-20-3 E841B 0.05 μgl. 0.5 μgl. 115 50.0 130 nitropyrene, 4- 5783-69-24 E841B 0.1 μgl. 0.5 μgl. 115 50.0 140 perylene 198-56-9 E841B 0.01 μgl. 0.5 μgl. 111 00.0 130 phenaritivene 85-01-8 E841B 0.02 μgl. 0.5 μgl. 110 60.0 130 pyrene 129-00-9 E841B 0.02 μgl. 0.5 μgl. 110 60.0 130 Phenolics (QCLot: 133407) chiorophenol, 2- 661B 0.05 μgl. 2 μgl. 87.6 50.0 130 chiorophenol, 3- 18-34-9 E851A 0.05 μgl. 2 μgl. 87.2 50.0 130 chiorophenol, 2- 95-7-8 E851A 0.05 μgl.	methylcholanthrene, 3-	56-49-5	E641B	0.01	μg/L	0.5 µg/L	110	50.0	130		
naphthalene 91-20-3 E841B 0.05 μg/L 0.5 μg/L 115 50.0 130 nitropyrene, 4 57835-92-4 E841B 0.1 μg/L 0.5 μg/L 74.5 50.0 140 perylene 198-56-0 E841B 0.01 μg/L 0.5 μg/L 111 60.0 130 perylene 86-01-8 E841B 0.02 μg/L 0.5 μg/L 111 60.0 130 pyrene 129-00-0 E841B 0.02 μg/L 0.5 μg/L 110 60.0 130 pyrene 129-00-0 E841B 0.05 μg/L 130 60.0 130 quincline 6027-02-7 E841B 0.05 μg/L 120 60.0 130 cultionine 6027-02-7 E841B 0.05 μg/L 120 60.0 130 cultionine 6027-02-7 E841B 0.05 μg/L 120 60.0 130 cultionine 6027-02-7 E851A 0.05 μg/L 2 μg/L 87.2 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 87.2 50.0 130 chlorophenol, 4- 108-49- E851A 0.05 μg/L 2 μg/L 91.7 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.7 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 91.0 90.5 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 88.4 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 88.4 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 88.4 50.0 130 chlorophenol, 2- 65-57-8 E851A 0.05 μg/L 2 μg/L 88.4 50.0 130 chlorophenol, 3- 65-55-50-5	methylnaphthalene, 1-	90-12-0	E641B	0.01	μg/L	0.5 µg/L	120	60.0	130		
nitropyrene, 4- 57835-92-4 E841B	methylnaphthalene, 2-	91-57-6	E641B	0.01	μg/L	0.5 μg/L	117	60.0	130		
perylene 198-56-0 E841B 0.01 μg/L 0.5 μg/L 111 00.0 130 phenarithrene 85-01-8 E841B 0.02 μg/L 0.5 μg/L 1110 00.0 130 pyrene 129-00-0 E841B 0.01 μg/L 0.5 μg/L 130 00.0 130 quincline 0027-02-7 E841B 0.05 μg/L 0.5 μg/L 120 00.0 130 00.0 130 pyrene 129-00-0 E841B 0.05 μg/L 0.5 μg/L 120 00.0 13	naphthalene	91-20-3	E641B	0.05	μg/L	0.5 µg/L	115	50.0	130		
phenaritrene	nitropyrene, 4-	57835-92-4	E641B	0.1	μg/L	0.5 µg/L	74.5	50.0	140		
Principle 129-00-0 E841B 0.01 μg/L 0.5 μg/L 130 00.0 130 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 130 00.0 0	perylene	198-55-0	E641B	0.01	μg/L	0.5 µg/L	111	60.0	130		
Phenolics (QCLot: 133407) EB41B 0.05 μg/L 0.5 μg/L 120 60.0 130 Phenolics (QCLot: 133407) Phenolics (QCLot: 13407) Phenolics (QCLot: 143407) Phenolics (QCLot: 143407) Phenolics (QCLot: 143407) Phenolics (QCLot: 14207) Phenolics (QCLot: 14207) Phenolics	phenanthrene	85-01-8	E641B	0.02	μg/L	0.5 µg/L	110	60.0	130		
Phenolics (QCLot: 133407) chlorophenol, 2- chlorophenol, 3- chlorophenol, 4- dichlorophenol, 2,3- dichlorophenol, 2,4-+2,5- dichlorophenol, 2,8- dichlorophenol, 2,8- dichlorophenol, 3,4- dichlorophenol, 3,5- dichlorophenol, 3,5- methylphenol, 4- dichlorophenol, 3,5- methylphenol, 4- dichlorophenol, 3,5- methylphenol, 4- dichlorophenol, 2,8- dichlorophenol, 3,5- di	pyrene	129-00-0	E641B	0.01	μg/L	0.5 µg/L	130	60.0	130		
chlorophenol, 2- chlorophenol, 3- chlorophenol, 3- chlorophenol, 4- chlorophenol, 4- chlorophenol, 4- dichlorophenol, 2,3- dichlorophenol, 2,4-+2,5- dichlorophenol, 2,6- dichlorophenol, 2,6- dichlorophenol, 3,4- dichlorophenol, 3,5- methylphenol, 4- chlorophenol, 4- dichlorophenol, 2,5- dichlorophenol, 2,6- dichlorophenol,	quinoline	6027-02-7	E641B	0.05	μg/L	0.5 µg/L	120	60.0	130		
chlorophenol, 2- chlorophenol, 3- chlorophenol, 3- chlorophenol, 4- chlorophenol, 4- chlorophenol, 4- chlorophenol, 4- chlorophenol, 2,3- dichlorophenol, 2,3- dichlorophenol, 2,4-+2,5- dichlorophenol, 2,6- dichloropheno											
chlorophenol, 3- chlorophenol, 4- chlorophenol, 4- chlorophenol, 2,3- dichlorophenol, 2,4- + 2,5- dichlorophenol, 2,6- dichlorophenol, 2,6- dichlorophenol, 3,4- dichlorophenol, 2,6- dichlorophenol, 3,4- dichlorophenol, 3,4- dichlorophenol, 3,4- dichlorophenol, 3,4- dichlorophenol, 3,4- dichlorophenol, 3,5- dichlorophenol,	Phenolics (QCLot: 133407)										
chlorophenol, 4- chlorophenol, 2,3- dichlorophenol, 2,3- dichlorophenol, 2,4- + 2,5- dichlorophenol, 2,6- dichlorophenol, 2,8- dichlorophenol, 3,4- dichlorophenol, 3,5- methylphenol, 4-chloro-3- pentachlorophenol [PCP]	chlorophenol, 2-	95-57-8	E651A	0.05	μg/L	2 μg/L	87.6	50.0	130		
dichlorophenol, 2,3- dichlorophenol, 2,4-+2,5- dichlorophenol, 2,6- dichlorophenol, 2,6- dichlorophenol, 3,4- dichlorophenol, 3,5- methylphenol, 4-chloro-3- pentachlorophenol, 2,3,4,5- tetrachlorophenol, 2,3,4,6- dichlorophenol, 2,3- dichlorophenol, 2,6- dichlorophenol, 3,6- methylphenol, 4-chloro-3- pentachlorophenol, 2,6- dichlorophenol, 2,3- dichlorophenol, 2,3	chlorophenol, 3-	108-43-0	E651A	0.05	μg/L	2 μg/L	87.2	50.0	130		
dichlorophenol, 2,4- + 2,5- dichlorophenol, 2,8- dichlorophenol, 2,8- dichlorophenol, 3,4- dichlorophenol, 3,4- dichlorophenol, 3,5- dichlorophenol, 2,9,0-	chlorophenol, 4-	106-48-9	E651A	0.05	μg/L	2 μg/L	91.7	50.0	130		
dichlorophenol, 2,8- dichlorophenol, 3,4- dichlorophenol, 3,5- dichlorophenol, 2,9- dichlorophenol, 2,9- dichlorophenol, 3,5- dichlorophenol, 2,9- dichlorophenol, 2,9- dichlorophenol, 2,9- dichlorophenol, 3,5- dichlorophenol, 2,9- dichlorop	dichlorophenol, 2,3-	576-24-9	E651A	0.05	μg/L	2 μg/L	91.0	50.0	130		
dichlorophenol, 3,4- 95-77-2 E651A 0.05 µg/L 2 µg/L 88.4 50.0 130 dichlorophenol, 3,5- 591-35-5 E651A 0.05 µg/L 2 µg/L 90.8 50.0 130 methylphenol, 4-chloro-3- 59-50-7 E651A 0.1 µg/L 2 µg/L 91.9 60.0 130 pentachlorophenol [PCP] 87-86-5 E651A 0.1 µg/L 2 µg/L 93.9 60.0 130 tetrachlorophenol, 2,3,4,5- 4901-51-3 E651A 0.1 µg/L 2 µg/L 92.4 60.0 130 tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 µg/L 2 µg/L 90.6 60.0 130	dichlorophenol, 2,4- + 2,5-		E651A	0.05	μg/L	4 μg/L	90.5	50.0	130		
dichlorophenol, 3,5- 591-35-5 E651A 0.05 µg/L 2 µg/L 90.8 50.0 130 methylphenol, 4-chloro-3- 59-50-7 E651A 0.1 µg/L 2 µg/L 91.9 60.0 130 pentachlorophenol [PCP] 87-86-5 E651A 0.1 µg/L 2 µg/L 93.9 60.0 130 tetrachlorophenol, 2,3,4,5- 4901-51-3 E651A 0.1 µg/L 2 µg/L 92.4 60.0 130 tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 µg/L 2 µg/L 90.6 60.0 130	dichlorophenol, 2,6-	87-65-0	E651A	0.05	μg/L	2 μg/L	89.9	50.0	130		
methylphenol, 4-chloro-3- 59-50-7 E651A 0.1 μg/L 2 μg/L 91.9 60.0 130 pentachlorophenol [PCP] 87-86-5 E651A 0.1 μg/L 2 μg/L 93.9 60.0 130 tetrachlorophenol, 2,3,4,5- 4901-51-3 E651A 0.1 μg/L 2 μg/L 92.4 60.0 130 tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 μg/L 2 μg/L 90.6 60.0 130	dichlorophenol, 3,4-	95-77-2	E651A	0.05	μg/L	2 μg/L	88.4	50.0	130		
pentachlorophenol [PCP] 87-88-5 E851A 0.1 µg/L 2 µg/L 93.9 60.0 130 tetrachlorophenol, 2,3,4,5- 4901-51-3 E651A 0.1 µg/L 2 µg/L 92.4 60.0 130 tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 µg/L 2 µg/L 90.6 60.0 130	dichlorophenol, 3,5-	591-35-5	E651A	0.05	μg/L	2 μg/L	90.8	50.0	130		
tetrachlorophenol, 2,3,4,5- 4901-51-3 E651A 0.1 μg/L 2 μg/L 92.4 60.0 130 tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 μg/L 2 μg/L 90.6 60.0 130	methylphenol, 4-chloro-3-	59-50-7	E651A	0.1	μg/L	2 μg/L	91.9	60.0	130		
tetrachlorophenol, 2,3,4,6- 58-90-2 E651A 0.1 µg/L 2 µg/L 90.6 60.0 130	pentachlorophenol [PCP]	87-86-5	E651A	0.1	μg/L	2 μg/L	93.9	60.0	130		
	tetrachlorophenol, 2,3,4,5-	4901-51-3	E651A	0.1	μg/L	2 μg/L	92.4	60.0	130		
	tetrachlorophenol, 2,3,4,6-	58-90-2	E651A	0.1	μg/L	2 μg/L	90.6	60.0	130		
	tetrachlorophenol, 2,3,5,6-	935-95-5	E651A	0.1	μg/L	2 μg/L	94.4	60.0	130		
trichlorophenol, 2,3,4- 15950-68-0 E851A 0.1 µg/L 2 µg/L 91.0 50.0 130	trichlorophenol, 2,3,4-	15950-66-0	E651A	0.1	μg/L		91.0	50.0	130		
trichlorophenol, 2,3,5- 933-78-8 E651A 0.1 µg/L 2 µg/L 89.4 50.0 130	· ·	933-78-8	E651A	0.1							
trichlorophenol, 2,3,6- 933-75-5 E651A 0.1 µg/L 2 µg/L 92.2 50.0 130	•	933-75-5	E651A	0.1							

Page : 17 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report Recovery (%) Recovery Limits (%) LCS Low High Qualifier					
					Spike	Recovery (%)	Recovery	Recovery Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Phenolics (QCLot: 133407) - continued										
trichlorophenal, 2,4,5-	95-95-4	E651A	0.1	μg/L	2 μg/L	94.0	50.0	130		
trichlorophenol, 2,4,6-	88-06-2	E651A	0.1	μg/L	2 μg/L	93.3	50.0	130		
trichlorophenol, 3,4,5-	609-19-8	E651A	0.1	μg/L	2 μg/L	89.5	50.0	130		

Qualifiers

Qualifier	Description
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.

Page : 18 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ents (QCLot: 133829)		10000							
VA20C3273-001	Anonymous	chloride	16887-00-6	E235.CI	100 mg/L	100 mg/L	100	75.0	125	_
nions and Nutrie	ents (QCLot: 133919)									
VA20C3708-002	Anonymous	chloride	16887-00-6	E235.CI	496 mg/L	500 mg/L	99.2	75.0	125	
issolved Metals	(QCLot: 133469)									
KS2002946-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.197 mg/L	0.2 mg/L	98.4	70.0	130	_
		antimony, dissolved	7440-36-0	E421	0.0223 mg/L	0.02 mg/L	111	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0212 mg/L	0.02 mg/L	108	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0412 mg/L	0.04 mg/L	103	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00863 mg/L	0.01 mg/L	86.3	70.0	130	
		boron, dissolved	7440-42-8	E421	0.099 mg/L	0.1 mg/L	99.1	70.0	130	_
		cadmium, dissolved	7440-43-9	E421	0.00382 mg/L	0.004 mg/L	95.4	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, dissolved	7440-48-2	E421	0.00997 mg/L	0.01 mg/L	99.7	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0179 mg/L	0.02 mg/L	89.6	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0179 mg/L	0.02 mg/L	89.6	70.0	130	_
		iron, dissolved	7439-89-6	E421	1.95 mg/L	2 mg/L	97.4	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0191 mg/L	0.02 mg/L	95.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0898 mg/L	0.1 mg/L	89.8	70.0	130	_
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	_
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	_
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130	_
		nickel, dissolved	7440-02-0	E421	0.0353 mg/L	0.04 mg/L	88.3	70.0	130	
		phosphorus, dissolved	7723-14-0	E421	10.5 mg/L	10 mg/L	105	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.84 mg/L	4 mg/L	95.9	70.0	130	_
		rubidium, dissolved	7440-17-7	E421	0.0199 mg/L	0.02 mg/L	99.6	70.0	130	
		selenium, dissolved	7782 -49- 2	E421	0.0451 mg/L	0.04 mg/L	113	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.10 mg/L	10 mg/L	91.0	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00310 mg/L	0.004 mg/L	77.6	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130	
	I	strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	

Page : 19 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project :--

Sub-Matrix: Water							Matrix Spil	re (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
issolved Metals	(QCLot: 133469) - cor	ntinued								
KS2002946-002	Anonymous	sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	_
		tellurium, dissolved	13494-80-9	E421	0.0398 mg/L	0.04 mg/L	99.5	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00378 mg/L	0.004 mg/L	94.6	70.0	130	
		thorium, dissolved	7440-29-1	E421	0.0197 mg/L	0.02 mg/L	98.4	70.0	130	-
		tin, dissolved	7440-31-5	E421	0.0201 mg/L	0.02 mg/L	100	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
		tungsten, dissolved	7440-33-7	E421	0.0214 mg/L	0.02 mg/L	107	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00393 mg/L	0.004 mg/L	98.2	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0980 mg/L	0.1 mg/L	98.0	70.0	130	-
		zinc, dissolved	7440-66-6	E421	0.390 mg/L	0.4 mg/L	97.4	70.0	130	
		zirconium, dissolved	7440-67-7	E421	0.0424 mg/L	0.04 mg/L	106	70.0	130	
issolved Metals	(QCLot: 133470)									
KS2002946-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0380 mg/L	0.04 mg/L	95.1	70.0	130	-
issolved Metals	(QCLot: 134456)									
/A20C3685-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000970 mg/L	0.0001 mg/L	97.0	70.0	130	-
olatile Organic (Compounds (QCLot: 1:	33524)								
VA20C3819-002	Anonymous	benzene	71-43-2	E611C	108 µg/L	100 μg/L	108	60.0	140	-
		bromodichloromethane	75-27-4	E611C	116 µg/L	100 μg/L	116	60.0	140	
		bromoform	75-25-2	E611C	87.3 µg/L	100 μg/L	87.3	60.0	140	-
		carbon tetrachloride	58-23-5	E611C	100 µg/L	100 μg/L	100	60.0	140	-
		chlorobenzene	108-90-7	E611C	109 µg/L	100 μg/L	109	60.0	140	
		chloroethane	75-00-3	E611C	75.5 µg/L	100 μg/L	75.5	50.0	150	
		chloroform	67-66-3	E611C	113 µg/L	100 μg/L	113	60.0	140	_
		chloromethane	74-87-3	E611C	52.4 µg/L	100 μg/L	52.4	50.0	150	
		dibromochloromethane	124-48-1	E611C	89.1 µg/L	100 μg/L	89.1	60.0	140	-
		dichlorobenzene, 1,2-	95-50-1	E611C	109 µg/L	100 μg/L	109	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611C	108 µg/L	100 μg/L	108	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611C	110 µg/L	100 μg/L	110	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611C	108 µg/L	100 μg/L	108	60.0	140	
		dichloroethane, 1,2-	107-08-2	E611C	109 µg/L	100 μg/L	109	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611C	107 µg/L	100 μg/L	107	60.0	140	
		dichloroethylene, cis-1,2-	156-59-4	E611C	118 µg/L	100 μg/L	118	60.0	140	
		dichloroethylene, trans-1,2-	156-60-5	E611C	112 µg/L	100 μg/L	112	60.0	140	
		dichloromethane	75-09-2	E611C	109 µg/L	100 μg/L	109	60.0	140	
		dichloropropane, 1,2-	78-87-5	E611C	106 µg/L	100 μg/L	106	60.0	140	
	I	dichloropropylene, cis-1,3-	10061-01-5	E611C	87.1 µg/L	100 µg/L	87.1	60.0	140	

Page : 20 of 20 Work Order : VA20C3698

Client : WSP Canada Group Limited

Project : --

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLot: 1	33524) - continued								
VA20C3819-002	Anonymous	dichloropropylene, trans-1,3-	10061-02-6	E611C	60.7 µg/L	100 μg/L	60.7	60.0	140	_
		ethylbenzene	100-41-4	E611C	105 µg/L	100 μg/L	105	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611C	111 µg/L	100 μg/L	111	60.0	140	
		styrene	100-42-5	E611C	102 µg/L	100 μg/L	102	60.0	140	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611C	109 µg/L	100 μg/L	109	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611C	108 µg/L	100 μg/L	108	60.0	140	
		tetrachloroethylene	127-18 -4	E611C	94.1 µg/L	100 μg/L	94.1	60.0	140	
		toluene	108-88-3	E611C	94.3 µg/L	100 μg/L	94.3	60.0	140	
		trichloroethane, 1,1,1-	71-55-6	E611C	106 µg/L	100 μg/L	106	60.0	140	
		trichloroethane, 1,1,2-	79-00-5	E611C	103 µg/L	100 μg/L	103	60.0	140	
		trichloroethylene	79-01-6	E611C	107 µg/L	100 μg/L	107	60.0	140	
		trichlorofluoromethane	75-69 -4	E611C	108 µg/L	100 μg/L	108	50.0	150	
		vinyl chloride	75-01-4	E611C	53.8 µg/L	100 μg/L	53.8	50.0	150	
		xylene, m+p-	179601-23-1	E611C	206 μg/L	200 μg/L	103	60.0	140	
		xylene, o-	95-47-6	E611C	104 μg/L	100 μg/L	104	60.0	140	
Hydrocarbons (0	QCLot: 133523)									
VA20C3819-001	Anonymous	F1 (C8-C10)		E581.VH+F1	5600 μg/L	6310 µg/L	88.8	60.0	140	-
		VHw (C8-C10)		E581.VH+F1	5260 μg/L	6310 µg/L	83.4	60.0	140	

Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

≨(lab use only)

coc Number: 17 - 865482

www.alsglobal.com Contact and company name below will appear on the final report Report To Report Format / Distribution Select Service Level Bolow - Contact your AM to confirm all E&P TATs (surcharges may apply) Company Inc POF EXCEL EDD (DIGITAL) Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Marina Makovetshi Contact: Quality Control (QC) Report with Report 4 day [P4-20%] 1 Business day [E - 100%] Compare Results to Criteria on Report - provide details below if box checked 3 day [P3-25%] Same Day, Weekend or Statutory holiday [E2 -200% EMAIL MAIL FAX Select Distribution: 2 day [P2-50%] (Laboratory opening fees may apply)] 100-20339 46 Email 2 Fory, Chudley Q WSP. Com Street: Date and Time Required for all EBP TATs: dd-mmm-yy hh:mm City/Prevince: or texts that can not be performed according to the service level selected, you will be contacted. Postal Code: Email 3 Analysis Request Invoice To Same as Report To YES NO Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below HOLD Copy of Invoice with Report Select Invoice Distribution: EMAIL MAIL FAX YES NO CONTAINER Email 1 or Fax Company: & Non-Chainete Contact: Email 2 Z Project Information Oil and Gas Required Fields (client use) ALS Account # / Quote # AFE/Cost Center PO# Job# 20 M- 90 758-00 Major/Minor Code: Routing Code: AMPLES PO/AFE: Requisitioner P LSD: Location 띪 ALS Lab Work Order # (lab use only): ALS Contact: Sampler: NUMBE Sol Sample Identification and/or Coordinates Date Time ALS Sample # 0 Sample Type (lab use only) (dd-mmm-yy) (This description will appear on the report) (hhamm) Witer Zo-MWI 7 DET 20 20-MW2 20-MW3 X Environmental Division Vancouver Work Order Reference VA20C3698 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instri n the drop-down list below Drinking Water (DW) Samples1 (client use) rozen SIF Observations No Are samples taken from a Regulated DW System? ice Packs No Telephone: +1 604 263 4188 YES NO Cooling Initiated Are samples for human consumption/ use? INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES *C YES | NO INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Received by: Received by: 4:050 Ory WHITE - LABORATORY COPY

CERTIFICATE OF ANALYSIS

Work Order : VA21A1296

Client : WSP Canada Inc.

Contact : Marina Makovetski

Address : Unit 100 - 20339 96 Avenue

Langley BC Canada V1M 2L1

Telephone : 604-353-7077
Project : 20M-00758-00

PO :----

C-O-C number : 20-905316

 Sampler
 : RC

 Site
 : ---

 Quote number
 : ---

 No. of samples received
 : 3

 No. of samples analysed
 : 3

Page : 1 of 5

Laboratory : Vancouver - Environmental

Account Manager : Carla Fuginski

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 22-Jan-2021 14:25

Date Analysis Commenced : 27-Jan-2021

Issue Date : 29-Jan-2021 11:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Brieanna Allen Production/Validation Manager Organics, Burnaby, British Columbia
Kaitlyn Gardner Account Manager Assistant Administration, Burnaby, British Columbia

 Page
 : 2 of 5

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

ALS

General Comments

Project

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

: 20M-00758-00

Unit	Description
μg/m³	micrograms per cubic metre
µg/sample	micrograms per sample
L	litres

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

 Page
 : 3 of 5

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Air			CI	ient sample ID	20-VP1	20-VP2	20-DUP1	
(Matrix: Air)								
			Client sampli	ng date / time	22-Jan-2021	22-Jan-2021	22-Jan-2021	
44-4-	C45.41	Method	LOR	Unit	VA21A1296-001	VA21A1296-002	VA21A1296-003	
Analyte	CAS Number	weiriod	LOR	Orin.	Result	Result	Result	
Field Tests					rvesuit	rvesuit	rvesuit	
air volume, field		EF003	0.010	L	2.09	2.05	1.57	
		2. 665	0.010	_	2.55	2.55		
Volatile Organic Compounds bromodichloromethane	75-27-4	EC620E	0.50	μg/m³	<0.50	<0.50	<0.50	
bromodichloromethane	75-27-4		0.0002	μg/sample	<0.0002	<0.0002	<0.0002	
bromoform		EC620E	6.0	µg/m³	<6.0	<6.0	<6.0	
bromoform	75-25-2		0.0030	µg/sample	<0.0030	<0.0030	<0.0030	
chlorobenzene		EC820E	5.0	µg/m³	<5.0	<5.0	<5.0	
chlorobenzene	108-90-7		0.0025	µg/sample	<0.0025	<0.0025	<0.0025	
chloromethane		EC820E	5.6	µg/m³	<5.6	<5.6	<5.6	
chloromethane		E620E	0.0028	µg/sample	<0.0028	<0.0028	<0.0028	
decane, n-	124-18-5		50	μg/m³	<50	<50	<50	
decane, n-	124-18-5		0.025	µg/sample	<0.025	<0.025	<0.025	
dibromochloromethane	124-48-1		20	μg/m³	<20	<20	<20	
dibromochloromethane	124-48-1	E620E	0.010	µg/sample	<0.010	<0.010	<0.010	
dichlorobenzene, 1,2-	95-50-1	EC620E	30	μg/m³	<30	<30	<30	
dichlorobenzene, 1,2-	95-50-1	E620E	0.015	µg/sample	<0.015	<0.015	<0.015	
dichlorobenzene, 1,3-	541-73-1	EC620E	10	µg/m³	<10	<10	<10	
dichlorobenzene, 1,3-	541-73-1	E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050	
dichlorobenzene, 1,4-	108-48-7	EC620E	10	μg/m³	<10	<10	<10	
dichlorobenzene, 1,4-	106-46-7	E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050	
dichloropropane, 1,2-	78-87-5	EC620E	0.50	μg/m³	<0.50	<0.50	<0.50	
dichloropropane, 1,2-	78-87-5	E620E	0.00025	µg/sample	<0.00025	<0.00025	<0.00025	
dichloropropylene, cis+trans-1,3-	542-75-6	EC620E	1.5	μg/m³	<1.5	<1.5	<1.5	
dichloropropylene, cis+trans-1,3-	542-75-8	E620E	0.00075	µg/sample	<0.00075	<0.00075	<0.00075	
dichloropropylene, cis-1,3-	10061-01-5	EC620E	1.0	μg/m³	<1.0	<1.0	<1.0	
dichloropropylene, cis-1,3-	10061-01-5	E620E	0.00050	µg/sample	<0.00050	<0.00050	<0.00050	
dichloropropylene, trans-1,3-	10061-02-6	EC620E	1.0	μg/m³	<1.0	<1.0	<1.0	
dichloropropylene, trans-1,3-	10061-02-6	E620E	0.00050	µg/sample	<0.00050	<0.00050	<0.00050	
hexane, n-	110-54-3	EC820E	50	μg/m³	<50	<50	<50	
hexane, n-	110-54-3	E620E	0.025	µg/sample	<0.025	<0.025	<0.025	
tetrachloroethane, 1,1,1,2-	630-20-6	EC620E	1.0	μg/m³	<1.0	<1.0	<1.0	

 Page
 : 4 of 5

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Air	Client sample ID		20-VP1	20-VP2	20-DUP1			
(Matrix: Air)								
		Client earneli	ng date / time	22-Jan-2021	22-Jan-2021	22-Jan-2021		
At-t- CACAL	nber Method	LOR	Unit	VA21A1296-001	VA21A1296-002	VA21A1296-003		
Analyte CAS N	nber metrod	Lon	Onk.	Result	Result	Result	_	
Volatile Organic Compounds				rvestan	TVESOR.	rvesuit		
	20-6 E620E	0.00050	µg/sample	<0.00050	<0.00050	<0.00050		
	34-5 EC620E	0.60	μg/m³	<0.60	<0.60	<0.60		
tetrachloroethane, 1,1,2,2-	34-5 E620E	0.00030	µg/sample	<0.00030	<0.00030	<0.00030		
	69-4 EC620E	50	μg/m³	<50	<50	<50		
trichlorofluoromethane 75	69-4 E620E	0.025	μg/sample	<0.025	<0.025	<0.025		
Volatile Organic Compounds [BTEXS+MTBE]								
	43-2 EC620E	1.5	μg/m³	<1.5	<1.5	<1.5		
benzene 7	43-2 E620E	0.00075	µg/sample	<0.00075	0.00138	0.00118		
ethylbenzene 100	41-4 EC820E	5.0	μg/m³	<5.0	<5.0	<5.0		
ethylbenzene 100	41-4 E620E	0.0025	µg/sample	<0.0025	<0.0025	<0.0025		
methyl-tert-butyl ether [MTBE] 1634	04-4 EC820E	50	μg/m³	<50	<50	<50		
methyl-tert-butyl ether [MTBE] 1634	04-4 E620E	0.025	µg/sample	<0.025	<0.025	<0.025		
styrene 100	42-5 EC620E	5.0	μg/m³	<5.0	<5.0	<5.0		
styrene 100	42-5 E620E	0.0025	µg/sample	<0.0025	0.0037	0.0035		
toluene 100	88-3 EC620E	40	μg/m³	<40	<40	<40		
toluene 100	88-3 E620E	0.020	µg/sample	<0.020	<0.020	<0.020		
xylene, m+p- 17960	23-1 EC820E	10	μg/m³	<10	<10	<10		
xylene, m+p- 17980	23-1 E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050		
xylene, o- 98	47-6 EC620E	5.0	μg/m³	<5.0	<5.0	<5.0		
xylene, o- 98	47-6 E620E	0.0025	µg/sample	<0.0025	<0.0025	<0.0025		
xylenes, total 133	20-7 EC620E	12	μg/m³	<12	<12	<12		
xylenes, total 1330	20-7 E620E	0.0060	µg/sample	<0.0060	<0.0060	<0.0060		
Volatile Organic Compounds [Drycleaning]								
	23-5 EC620E	0.40	μg/m³	<0.40	<0.40	<0.40		
carbon tetrachloride 56	23-5 E620E	0.00020	µg/sample	<0.00020	<0.00020	<0.00020		
	00-3 EC620E	100	μg/m³	<100	<100	<100		
	00-3 E620E	0.050	µg/sample	<0.050	<0.050	<0.050		
	66-3 EC620E	0.60	μg/m³	<0.60	<0.60	<0.60		
	66-3 E620E	0.00030	µg/sample	<0.00030	<0.00030	<0.00030		
	34-3 EC820E	5.0	μg/m³	<5.0	<5.0	<5.0		
	34-3 E620E	0.0025	µg/sample	<0.0025	<0.0025	<0.0025		
dichloroethane, 1,2-	06-2 EC620E	0.40	µg/m³	<0.40	<0.40	<0.40		

 Page
 : 5 of 5

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analytical Results

Sub-Matrix: Air			CI	ïent sample ID	20-VP1	20-VP2	20-DUP1		
(Matrix: Air)									
			Client sampli	ng date / time	22-Jan-2021	22-Jan-2021	22-Jan-2021		
Analyte	CAS Number	Method	LOR	Unit	VA21A1296-001	VA21A1296-002	VA21A1296-003		
					Result	Result	Result	_	
Volatile Organic Compounds [Drycleaning]									
dichloroethane, 1,2-	107-06-2	E620E	0.00020	µg/sample	<0.00020	<0.00020	<0.00020		
dichloroethylene, 1,1-	75-35-4	EC620E	0.50	μg/m³	<0.50	<0.50	<0.50		
dichloroethylene, 1,1-	75-35-4	E620E	0.00025	µg/sample	< 0.00025	<0.00025	<0.00025		
dichloroethylene, cis-1,2-	156-59-4	EC620E	10	μg/m³	<10	<10	<10		
dichloroethylene, cis-1,2-	156-59-4	E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050		
dichloroethylene, trans-1,2-	156-60-5	EC620E	10	μg/m³	<10	<10	<10		
dichloroethylene, trans-1,2-	156-60-5	E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050		
dichloromethane	75-09-2	EC620E	10	μg/m³	<10	<10	<10		
dichloromethane	75-09-2	E620E	0.0050	µg/sample	<0.0050	<0.0050	<0.0050		
tetrachloroethylene	127-18-4	EC620E	20	μg/m³	32	38	34		
tetrachloroethylene	127-18-4	E620E	0.010	µg/sample	0.066	0.078	0.053		
trichloroethane, 1,1,1-	71-55-6	EC620E	5.0	μg/m³	<5.0	<5.0	<5.0		
trichloroethane, 1,1,1-	71-55-6	E620E	0.0025	µg/sample	<0.0025	<0.0025	<0.0025		
trichloroethane, 1,1,2-	79-00-5	EC620E	0.40	μg/m³	<0.40	<0.40	<0.40		
trichloroethane, 1,1,2-	79-00-5	E620E	0.00020	µg/sample	<0.00020	<0.00020	<0.00020		
trichloroethylene	79-01-6	EC620E	0.40	μg/m³	<0.40	<0.40	<0.40		
trichloroethylene	79-01-6	E620E	0.00020	µg/sample	<0.00020	0.00039	0.00031		
vinyl chloride	75-01-4	EC620E	0.50	μg/m³	<0.50	<0.50	<0.50		
vinyl chloride	75-01-4	E620E	0.00025	µg/sample	<0.00025	<0.00025	<0.00025		
Volatile Organic Compounds Surrogates									
bromofluorobenzene, 4-	460-00-4	E620E	0.00050	%	97.2	96.6	96.9		
difluorobenzene, 1,4-	540-36-3	E620E	0.00050	%	93.7	93.7	93.5		
Hydrocarbons									
VHv (C6-C13)		EC591B	1000	µg/m³	<1000	1000	<1000		
VHv (C6-C13)		E591B	0.50	µg/sample	<0.50	2.06	1.52		
VPHv		EC590B 1000 μg/m³ <		<1000	1000	<1000			
VPHv		E590B 0.50 μg/sample		<0.50	2.06	1.52			
Hydrocarbons Surrogates									
pentane, n-	109-66-0	E591B	1.0	%	104	104	104		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Langley BC Canada V1M 2L1

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA21A1296 Page : 1 of 7

Client : WSP Canada Inc. Laboratory : Vancouver - Environmental

Contact : Marina Makovetski Account Manager : Carla Fuginski
Address : Unit 100 - 20339 96 Avenue Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

: 29-Jan-2021 11:25

 Telephone
 : 604-353-7077
 Telephone
 : +1 604 253 4188

 Project
 : 20M-00758-00
 Date Samples Received
 : 22-Jan-2021 14:25

PO : ----

C-O-C number : 20-905316
Sampler : RC
Site :---Quote number : ---No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Issue Date

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

. No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

. No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

 Page
 : 3 of 7

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Air					Ev	valuation: 🗷 =	Holding time excee	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			is		
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual	•		Rec	Actual	
Field Tests : Air Sampling Volume										
Thermal desorption tube										
20-DUP1	EF003	22-Jan-2021					27-Jan-2021			
Field Tests : Air Sampling Volume										
Thermal desorption tube										
20-VP1	EF003	22-Jan-2021					27-Jan-2021			
Field Tests : Air Sampling Volume										
Thermal desorption tube										
20-VP2	EF003	22-Jan-2021					27-Jan-2021			
Hydrocarbons : TVOC (VHv) in Tube by Thermal Desorption GC-FID (ug/sample)										
Thermal desorption tube										
20-DUP1	E591B	22-Jan-2021					28-Jan-2021	30 days	6 days	*
Hydrocarbons : TVOC (VHv) in Tube by Thermal Desorption GC-FID (ug/sample)										
Thermal desorption tube										
20-VP1	E591B	22-Jan-2021					28-Jan-2021	30 days	6 days	·
Hydrocarbons : TVOC (VHv) in Tube by Thermal Desorption GC-FID (ug/sample)										
Thermal desorption tube										
20-VP2	E591B	22-Jan-2021					28-Jan-2021	30 days	6 days	·
Volatile Organic Compounds : VOCs (BC CSR) by Active Thermal Desorption GC-	MS (ug/sample)									
Thermal desorption tube										
20-DUP1	E620E	22-Jan-2021					28-Jan-2021			

 Page
 : 4 of 7

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Matrix: Air Evaluation: x = Holding time exceedance; v = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Volatile Organic Compounds: VOCs (BC CSR) by Active Thermal Desorption GC-MS (ug/sample) Thermal desorption tube E620E 22-Jan-2021 20-VP1 28-Jan-2021 Volatile Organic Compounds : VOCs (BC CSR) by Active Thermal Desorption GC-MS (ug/sample) Thermal desorption tube 20-VP2 E620E 22-Jan-2021 28-Jan-2021 Volatile Organic Compounds [BTEXS+MTBE]: VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube 20-DUP1 E620E 22-Jan-2021 28-Jan-2021 30 days 6 days Volatile Organic Compounds [BTEXS+MTBE] : VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube E620E 22-Jan-2021 20-VP1 28-Jan-2021 30 days 6 days Volatile Organic Compounds [BTEXS+MTBE] : VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube E620E 22-Jan-2021 28-Jan-2021 30 days 6 days 20-VP2 Volatile Organic Compounds [Drycleaning] : VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube E620E 20-DUP1 22-Jan-2021 28-Jan-2021 Volatile Organic Compounds [Drycleaning] : VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube E620E 20-VP1 22-Jan-2021 28-Jan-2021 Volatile Organic Compounds [Drycleaning] : VOCs (BC CSR) by Active Thermal Desorption Thermal desorption tube E620E 22-Jan-2021 28-Jan-2021 20-VP2

Legend & Qualifier Definitions

 Page
 : 5 of 7

 Work Order
 : VA21A1298

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Rec. HT: ALS recommended hold time (see units).

 Page
 : 6 of 7

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Air Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.

			-,,								
Quality Control Sample Type			Count Frequ								
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation				
Laboratory Control Samples (LCS)											
TVOC (VHv) in Tube by Thermal Desorption GC-FID (ug/sample)	E591B	145708	1	15	6.6	5.0	✓				
VOCs (BC CSR) by Active Thermal Desorption GC-MS (ug/sample)	E620E	145705	1	13	7.6	5.0	✓				
Method Blanks (MB)											
TVOC (VHv) in Tube by Thermal Desorption GC-FID (ug/sample)	E591B	145708	1	15	6.6	5.0	✓				
VOCs (BC CSR) by Active Thermal Desorption GC-MS (ug/sample)	E620E	145705	1	13	7.6	5.0	1				

 Page
 : 7 of 7

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VPHv in Tube by Thermal Desorption	E590B	Air	BC MOE Lab Manual	Volatile Petroleum Hydrocarbons (VPH) is calculated as follows: VPHv = Volatile
GC-MS/FID (ug/sample)			(Calculation of VPH)	Hydrocarbons (VH8-13) minus benzene, toluene, ethylbenzene, xylenes, styrene,
	Vancouver -			n-hexane, and n-decane.
	Environmental			
TVOC (VHv) in Tube by Thermal Desorption	E591B	Air	EPA TO-17/BC MOE	Volatile Hydrocarbons (VH) in sample tubes are thermally desorbed prior to injection into
GC-FID (ug/sample)			Lab Manual (VH in	a GC-FID system for analysis.
	Vancouver -		Air-Vapour by	
	Environmental		GC-FID/GC-MS) (mod)	
VOCs (BC CSR) by Active Thermal	E620E	Air	EPA TO-17/BC MOE	Volatile Organic Compounds (VOCs) in sample tubes are thermally desorbed prior to
Desorption GC-MS (ug/sample)			Lab Manual (VOC in	injection into a GC-MS system for analysis.
	Vancouver -		Air by Thermal	
	Environmental		Desorption	
			Tube/GC-MS)	
VPHv in Tube (ug/m3)	EC590B	Air	unit conversion	Result expressed in µg/m3 based on the sample volume.
	Vancouver -			
	Environmental			
TVOC (VHv) in Tube by Thermal Desorption	EC591B	Air	unit conversion	Result expressed in µg/m3 based on the sample volume.
GC-FID (ug/m3)				
	Vancouver -			
	Environmental			
VOCs (BC CSR) by Active Thermal	EC620E	Air	unit conversion	Convert ug/sample to ug/m3
Desorption GC-MS (ug/m3)				
	Vancouver -			
	Environmental			
Air Sampling Volume	EF003	Air		Field measurement of sampling volume provided by client and recorded on ALS report
				may affect the validity of results.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Laboratory

: Vancouver - Environmental

:8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Work Order :VA21A1296 Page : 1 of 6

Client :WSP Canada Inc. Contact

Marina Makovetski Account Manager : Carla Fuginski Address

: Unit 100 - 20339 96 Avenue Langley BC Canada V1M 2L1

Telephone :+1 604 253 4188 Telephone :604-353-7077 Date Samples Received :22-Jan-2021 14:25 Project :20M-00758-00

Date Analysis Commenced · 27-Jan-2021 PO

:29-Jan-2021 11:25 C-O-C number :20-905316 Issue Date

Sampler :RC Site Quote number No. of samples received :3 No. of samples analysed . 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Brieanna Allen Production/Validation Manager Organics, Burnaby, British Columbia Kaitlyn Gardner Account Manager Assistant Administration, Burnaby, British Columbia

 Page
 : 2 of 6

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 6

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCL	ot: 145705)					
benzene	71-43-2	E620E	0.00075	μg/sample	<0.00075	_
bromodichloromethane	75-27-4	E620E	0.00025	μg/sample	<0.0002	
bromoform	75-25-2	E620E	0.003	μg/sample	<0.0030	_
carbon tetrachloride	56-23-5	E620E	0.0002	μg/sample	<0.00020	
chlorobenzene	108-90-7	E620E	0.0025	μg/sample	<0.0025	
chloroethane	75-00-3	E620E	0.05	μg/sample	<0.050	
chloroform	67-66-3	E620E	0.0003	μg/sample	<0.00030	-
chloromethane	74-87-3	E620E	0.0028	μg/sample	<0.0028	
decane, n-	124-18-5	E620E	0.025	μg/sample	<0.025	
dibromochloromethane	12 4.4 8-1	E620E	0.01	μg/sample	<0.010	-
dichlorobenzene, 1,2-	95-50-1	E620E	0.015	μg/sample	<0.015	_
dichlorobenzene, 1,3-	541-73-1	E620E	0.005	µg/sample	<0.0050	_
dichlorobenzene, 1,4-	106-46-7	E620E	0.005	μg/sample	<0.0050	
dichloroethane, 1,1-	75-34-3	E620E	0.0025	μg/sample	<0.0025	
dichloroethane, 1,2-	107-06-2	E620E	0.0002	µg/sample	<0.00020	_
dichloroethylene, 1,1-	75-35 -4	E620E	0.00025	μg/sample	<0.00025	
dichloroethylene, cis-1,2-	156-59-4	E620E	0.005	μg/sample	<0.0050	
dichloroethylene, trans-1,2-	156-60-5	E620E	0.005	μg/sample	<0.0050	
dichloromethane	75-09-2	E620E	0.005	µg/sample	<0.0050	_
dichloropropane, 1,2-	78-87-5	E620E	0.00025	μg/sample	<0.00025	
dichloropropylene, cis+trans-1,3-	542-75-6	E620E	0.00075	μg/sample	<0.00075	
dichloropropylene, cis-1,3-	10061-01-5	E620E	0.0005	μg/sample	<0.00050	
dichloropropylene, trans-1,3-	10061-02-6	E620E	0.0005	μg/sample	<0.00050	
ethylbenzene	100-41-4	E620E	0.0025	µg/sample	<0.0025	
hexane, n-	110-54-3	E620E	0.025	µg/sample	<0.025	
methyl-tert-butyl ether [MTBE]	1634-04-4	E620E	0.025	μg/sample	<0.025	_
styrene	100-42-5	E620E	0.0025	µg/sample	<0.0025	_
tetrachloroethane, 1,1,1,2-	630-20-6	E620E	0.0005	μg/sample	<0.00050	
tetrachloroethane, 1,1,2,2-	79-34-5	E620E	0.0003	μg/sample	<0.00030	
tetrachloroethylene	127-18-4	E620E	0.01	μg/sample	<0.010	_
toluene	108-88-3	E620E	0.02	μg/sample	<0.020	
trichloroethane, 1,1,1-	71-55-6	E620E	0.0025	μg/sample	<0.0025	
trichloroethane, 1,1,2-	79-00-5	E620E	0.0002	μg/sample	<0.00020	
I			I	T. Control of the Con	I	

 Page
 : 4 of 6

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Air

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QC	Lot: 145705) - continued					
trichloroethylene	79-01-8	E620E	0.0002	μg/sample	<0.00020	
trichlorofluoromethane	75-69-4	E620E	0.025	µg/sample	<0.025	
vinyl chloride	75-01-4	E620E	0.00025	μg/sample	<0.00025	
xylene, m+p-	179601-23-1	E620E	0.005	μg/sample	<0.0050	
xylene, o-	95-47-8	E620E	0.0025	µg/sample	<0.0025	
Hydrocarbons (QCLot: 145706)						
VHv (C8-C13)	_	E591B	0.5	µg/sample	<0.50	
		I .				

 Page
 : 5 of 6

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Air					Laboratory Co	ontrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Meth	od LOF	Unit	Concentration	LCS	Low	High	Qualifie
/olatile Organic Compounds (QCLot:	145705)							
penzene	71-43-2 E620	E 0.000	75 µg/sample	0.2 µg/sample	106	60.0	140	
romodichloromethane	75-27-4 E620	E 0.000	25 µg/sample	0.2 μg/sample	94.9	60.0	140	_
romoform	75-25-2 E620	E 0.00	3 µg/sample	0.2 µg/sample	92.8	60.0	140	-
arbon tetrachloride	56-23-5 E620	E 0.000	2 μg/sample	0.2 µg/sample	0.89	60.0	140	-
hlorobenzene	108-90-7 E620	E 0.002	5 μg/sample	0.2 μg/sample	104	60.0	140	
hloroethane	75-00-3 E620	E 0.05	µg/sample	0.2 μg/sample	112	60.0	140	
hloroform	67-66-3 E620	E 0.000	3 μg/sample	0.2 μg/sample	100	60.0	140	
hloromethane	74-87-3 E620	E 0.002	8 µg/sample	0.2 μg/sample	109	60.0	140	
lecane, n-	124-18-5 E620	E 0.02	5 μg/sample	0.2 μg/sample	117	60.0	140	
ibromochloromethane	124-48-1 E620	E 0.01	µg/sample	0.2 μg/sample	94.4	60.0	140	
ichlorobenzene, 1,2-	95-50-1 E620	E 0.01	5 μg/sample	0.2 μg/sample	105	60.0	140	_
ichlorobenzene, 1,3-	541-73-1 E620	E 0.00	5 μg/sample	0.2 µg/sample	107	60.0	140	
chlorobenzene, 1,4-	106-46-7 E620	E 0.00	5 μg/sample	0.2 μg/sample	112	60.0	140	
chloroethane, 1,1-	75-34-3 E620	E 0.002	5 μg/sample	0.2 μg/sample	98.6	60.0	140	
chloroethane, 1,2-	107-06-2 E620	E 0.000	2 μg/sample	0.2 µg/sample	100	60.0	140	_
chloroethylene, 1,1-	75-35-4 E620	E 0.000	25 μg/sample	0.2 µg/sample	116	60.0	140	
chloroethylene, cis-1,2-	156-59-4 E620	E 0.00	5 μg/sample	0.2 μg/sample	98.3	60.0	140	_
chloroethylene, trans-1,2-	156-60-5 E620	E 0.00	5 μg/sample	0.2 µg/sample	104	60.0	140	-
chloromethane	75-09-2 E620	E 0.00	5 μg/sample	0.2 µg/sample	101	60.0	140	
chloropropane, 1,2-	78-87-5 E620	E 0.000	25 μg/sample	0.2 µg/sample	97.9	60.0	140	
chloropropylene, cis+trans-1,3-	542-75-6 E620	E 0.000	75 µg/sample	0.4 µg/sample	76.5	60.0	140	-
chloropropylene, cis-1,3-	10061-01-5 E620	E 0.000	5 μg/sample	0.2 µg/sample	83.8	60.0	140	
ichloropropylene, trans-1,3-	10061-02-6 E620	E 0.000	5 μg/sample	0.2 µg/sample	69.0	60.0	140	
thylbenzene	100-41-4 E620	E 0.002	5 μg/sample	0.2 µg/sample	107	60.0	140	
exane, n-	110-54-3 E620	E 0.02	5 μg/sample	0.2 µg/sample	120	60.0	140	_
ethyl-tert-butyl ether [MTBE]	1634-04-4 E620	E 0.02	5 μg/sample	0.2 μg/sample	85.4	60.0	140	
yrene	100-42-5 E620	E 0.002	5 µg/sample	0.2 μg/sample	120	60.0	140	
trachloroethane, 1,1,1,2-	630-20-6 E620	E 0.000	5 μg/sample	0.2 μg/sample	99.5	60.0	140	
trachloroethane, 1,1,2,2-	79-34-5 E620	E 0.000	3 μg/sample	0.2 μg/sample	101	60.0	140	-
trachloroethylene	127-18-4 E620	E 0.01	µg/sample	0.2 μg/sample	100	60.0	140	
luene	108-88-3 E620	E 0.02	µg/sample	0.2 μg/sample	107	60.0	140	
ichloroethane, 1,1,1-	71-55-6 E620	E 0.002	5 µg/sample	0.2 μg/sample	103	60.0	140	
ichloroethane, 1,1,2-	79-00-5 E620	E 0.000	2 μg/sample	0.2 μg/sample	103	60.0	140	
ichloroethylene	79-01-6 E620	E 0.000	2 μg/sample	0.2 µg/sample	98.9	60.0	140	

 Page
 : 6 of 6

 Work Order
 : VA21A1296

 Client
 : WSP Canada Inc.

 Project
 : 20M-00758-00

Sub-Matrix: Air			Laboratory Control Sample (LCS) Report									
				Spike	Recovery (%)	Recovery	/ Limits (%)					
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Volatile Organic Compounds (QCLo	t: 145705) - continued											
trichlorofluoromethane	75-69-4 E620E	0.025	µg/sample	0.2 µg/sample	119	60.0	140					
vinyl chloride	75-01-4 E620E	0.00025	µg/sample	0.2 μg/sample	110	60.0	140	-				
xylene, m+p-	179601-23-1 E620E	0.005	µg/sample	0.4 μg/sample	124	60.0	140	_				
xylene, o-	95-47-6 E620E	0.0025	µg/sample	0.2 μg/sample	110	60.0	140	-				
Hydrocarbons (QCLot: 145706)												
VHv (C8-C13)	— E591B	0.5	µg/sample	30 μg/sample	90.0	70.0	130	_				

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 - 905316

Canada Toll Free: 1 800 668 9878

ALS	}•
www.alsglobal.com	

Reliberation C. SHIPMENT RELEASE (client use)	☐ YES ☐ NO Are samples for human consumption/ use? ☐ YES ☐ NO	Are samples taken from a Regulated DW System?	Drinking Water (DW) Samples (client use)				20- DUPI	120- VP2	20- VPI	ALS sample # Sample Identification and/or Coordinates (ALS use only): (This description will appear on the report)	ALS Lab Work Order # (ALS use only):	LSD:		ALE AGGENT # / GUETE #	Project Information	Contact:	Company:	Copy of Invoice with Report	Involce To Same as Report To	Н	Street: 100 CIDAN DC	Company sources delow will appear	Phone: 604-233-707/	" Marian	\$	Report To Contact and company name bolow will appear on the final report
Time: Received by Date:		Marine and analysis	*Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)				22 Jan 20	22/100/20	22 56-20	Coordinates Date Time Sample Type (do-mmm-yy) (hh-mm)	ALS Contact Cyr le F. Sampler: R.C.	Location:		Majoritaino Code: Routing Code:	Oll and Gas Required	Email 2	Email 1 or Fax	Select Invoice Distribution:	Invoice Recipients	, , , , , ,	Email 2 Lory, thudley & WSD. COM	Select Distribution:	to Criteria din Report - prov	Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ rWA	X 500 □ 600 (0	Reports / Recipients
Time: Received by: 1/A Deta: 1/22 Time: 1/22 Time	Cooler Custody Seals Intact: NITTAL COOLER TEMPERAT	Submission Comments identified on Semple Receipt Notification: Type Occurs INTIATED	CEIPT DETAILS (ALS use only		Talephone: +1 604 253 4196			- x	VAZIAIZSO	NUN Vancouver Heference Work Order Heference	91	S OF	\\	HOL.	D	JIRI	Indicate Fittered (F), Preserved (P) or Fibered and Preserved (F/P) below	Analysis Request	For all teats with rush TATs requested, please contact your All to centim availability.	Date and Time Required for all E&P TATe: dd-rumm-yy hitchm amfgra	Sime day (E) If the fixed by jabon 14-5 - 2009, ruth surfacese, Additional fixes any apply to ruth requests on weekends, statutury holidays and nurriousine tests	□ 1 day [8] if received by alpm M-F - 100% rush surcharge minimum	ň.	a day [P9] if received by 3pm M-F - 20% ruch surcharge minimum AFFIX ALS BARCODE LABEL HE day [P9] if received by 3pm M-F - 25% ruch surcharge minimum AFFIX ALS BARCODE LABEL HE	Routing (R) if received by 3pm IMF - no surcharges apply	or o

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
Feature to complete all portions of this form may delay analysis. Piezza fit in this form LEGIBLY. By the use of this form the user ecknowledges and agrees with the Torms and Conditions as specified on the back page of transition - report copy.

1. If any water samples are taken from a Regulated Orinking Water (DW). System, please extends using an Authorized DW COC form.

APPENDIX

REGULATORY
FRAMEWORK &
ASSESSMENT
STANDARDS

REGULATORY FRAMEWORK

Under the Canada's Constitution, provincial environmental laws do not generally apply to the federal land. Part 9 "Government Operations and Federal and Aboriginal Land" of the Canadian Environmental Protection Act, 1999 (CEPA, 1999) applies to all federal works and undertakings, federal departments and parties who occupy or use federal land. It states that specific regulations can be made to ensure that federal land is covered by the same types of environmental regulations as land regulated by the provinces for the protection of the environment, including "releases of substances" and "to correct damage to the environment".

The Canadian Council of Ministers of the Environment (CCME) task groups developed the Canadian Environmental Quality Guidelines (CEQG) and Canada Wide Standards (CWS) for petroleum hydrocarbons (PHC), which are nationally endorsed, science-based goals for the quality of atmospheric, aquatic, and terrestrial ecosystems. In addition, and where CEQG and CWS were not available for certain potential contaminants of concern (PCOCs), provincial standards were used for comparison of analytical results to provide a full regulatory perspective rather than a legal conclusion of their applicability to the Site. The compliance with the CCME guidelines is voluntary.

The CCME CWS is a remedial standard for contaminated soil and subsoil occurring in four land use categories: agricultural, residential, commercial and industrial. Land use activities at the Site were identified to be commercial. It is understood that the Site will be redeveloped as a commercial property. The PHC CWS can be applied at any of three tiers: Tier 1 – generic numerical levels, Tier 2 – adjustment to Tier 1 levels based on scientific information and Tier 3 – site-specific risk assessment. Environmental and human health protection goals do not change between the tiers. Tier 1 were used for comparison of the analytical results for Subject Site accepting the base assumptions and parameters in the Tier 1 exposure scenario⁸.

Environment Canada developed the Federal Interim Groundwater Quality Guidelines (FIGQG) in 2010 (updated in 2012) which is advised to be used in conjunction with Health Canada Drinking Water Guidelines until CCME develops groundwater guidelines. The FIGQG for groundwater that are protective of aquatic habitat assume transport through unconsolidated soils.

While CSQG include consideration of the protection of indoor air for organic chemicals based on partitioning into soil vapour, soil vapour quality guidelines were not included on the CSQG. In 2014, CCME prepared a Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures Via Inhalation of Vapours. The protocol provides instructions on calculations of Soil Vapour Quality Guidelines (SVQG) that should be applied for a contaminated site considering site-specific factors and exposure scenarios.

⁸ CWS for PHC in Soil: Scientific Rationale Supporting Technical Document, January 2008.