APPENDIX B GEOTECHNICAL REPORTS

B.1: Geotechnical Data Report

Part K: Appendix H

Annacis Island WWTP New Outfall System

Vancouver Fraser Port Authority Project and Environmental Review Application

This page intentionally left blank

Mineralogy and Soil Abrasivity Analyses

PETROGRAPHIC EXAMINATION **OF FINE AGGREGATE** CSA A23.2-15A / ASTM C 295

CDM Smith Canada ULC 4720 Kingsway, Suite 1001 Burnaby, BC V5H 4N2

Project Number: 1525-010.3000 April 29, 2017

ATTENTION: Mr. John Newby

PROJECT: Annacis Outfall - Sediment evaluation

Date sampled:

2016

Sample:

Sampled by: GAL

BH16-06, Sa. 21 @ 103 - 105 ft

ROCK/MINERAL TYPE	PERCENT BY COUNT BY SIEVE SIZE		WEIGHTED	MOHS HARDNESS				
	0.250	0.150	0.106	0.075	0.053	TOTAL	Individual	Weighted
Volcanic lithic fragments	21.7	13.4	9.0	6.3	4.4	14.3	5	0.72
Granite - diorite lithic fragments	22.4	15.3	17.0	15.1	12.7	17.1	6	1.03
Undifferentiated lithic fragments	3.2	2.8	4.2	2.0	2.5	3.0	4	0.12
Quartzite/chert	1.1	1.0				0.9	7	0.06
Quartz	32.5	42.1	41.5	47.8	53.5	40.3	7	2.82
Feldspar	13.7	11.4	12.9	14.1	11.4	12.4	6	0.74
Pyroxene/Amphibole	1.1	8.0	9.3	6.8	9.8	6.6	6	0.40
Epidote	0.7	2.1	2.1	2.4	1.6	1.7	6.5	0.11
Oxides	0.3	1.3	1.7	2.5	1.9	1.1	6	0.07
Calcite	1.1	1.3	0.6	0.5		1.0	3	0.03
Mica	1.4	1.3	1.7	2.5	2.2	1.4	2.5	0.04
Silt/clay lumps	0.4					0.1	1	
Organic material	0.4					0.1	1	
TOTALS	100.0	100.0	100.0	100.0	100.0	100.0		6.14
Roundness	0.5	0.45	0.4	0.3	0.3	0.43		
Sphericity	0.7	0.7	0.7	0.7	0.75	0.7		

Note: 1. All identifications done using a binocular microscope, and standard physical index tests. No thin-sections were used.

PETROGRAPHER:

The test data given herein pertain to the sample provided, and may not be applicable to material from other locations/depths. This Notice: report constitutes a testing service only. Interpretation of the data given here may be provided upon request.

GOLDER ASSOCIATES LTD., 300 - 3811 North Fraser Way, Burnaby, B.C. Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816

Photographs

0.250 mm retained fraction left view: 10x magnification right view: 30x magnification	
0.150 mm retained fraction left view: 30x magnification right view: 40x magnification	
0.106 mm retained fraction left view: 10x magnification right view: 60x magnification	
0.075 mm retained fraction left view: 40x magnification right view: 70x magnification	

PETROGRAPHIC EXAMINATION OF FINE AGGREGATE CSA A23.2-15A / ASTM C295

CDM Smith Canada ULC 4720 Kingsway, Suite 1001 Burnaby, BC V5H 4N2 Project Number: 1525-010.3000 April 29, 2017

ATTENTION: Mr. John Newby

PROJECT: Annacis Outfall – Sediment evaluation

	Sample:	BH16-07, Sa. 21 @ 108 – 110 ft
Date sampled:	2016	Sampled by: GAL

ROCK/MINERAL TYPE	PERCENT BY COUNT BY SIEVE SIZE (mm)					WEIGHTED	MOHS HARDNESS	
	0.25, 0.15	0.106	0.075	0.063	0.053	TOTAL	Individual	Weighted
Volcanic lithic fragments	1.6	5.4				1.3	5	0.07
Granite - diorite lithic fragments	11.2	8.2	11.0	3.6	0.9	8.3	6	0.50
Undifferentiated lithic fragments	5.2	6.6				1.8	4	0.07
Quartz	37.7	52.3	55.5	62.6	64.5	55.6	7	
Feldspar	10.2	11.5	17.5	16.9	17.5	15.6	6	3.89
Pyroxene/Amphibole	1.0	4.5	8.8	8.3	10.0	7.5	6	0.94
Epidote			0.7	1.1	1.4	0.7	6.5	0.45
Calcite	1.6	3.7	3.1	1.4		2.6	3	0.08
Oxides	0.7		2.7	1.8	2.3	1.7	6	0.10
Mica	23.9	7.8	0.7	4.3	3.4	4.5	2.5	0.11
Organic material	6.9					0.4	1	
TOTALS	100.0	100.0	100.0	100.0	100.0	100.0		6.26
Roundness	0.50	0.45	0.40	0.40	0.40	0.42		
Sphericity	0.50	0.55	0.70	0.75	0.80	0.67		

Note: 1. All identifications done using a binocular microscope, and standard physical index tests. No thin-sections were used.

TRIMES PETROGRAPHER: F. Shrimer, P. Geo SCIEN

Notice: The test data given herein pertain to the sample provided; and may not be applicable to material from other locations/depths. This report constitutes a testing service only. Interpretation of the data given here may be provided upon request.

GOLDER ASSOCIATES LTD., 300 - 3811 North Fraser Way, Burnaby, B.C. Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816

Photographs

0.425 mm retained fraction left view: 10x magnification right view: 15x magnification	
0.250 mm retained fraction left view: 20x magnification right view: 40x magnification	
0.150 mm retained fraction left view: 20x magnification right view: 50x magnification	
Left view: 0.106 mm retained fraction: 40x magnification Right view: 0.075 mm retained fraction, 70x magnification	

Left view: 0.063 mm retained fraction: 70x magnification Right view: 0.053 mm retained fraction, 70x magnification

PETROGRAPHIC EXAMINATION OF FINE AGGREGATE CSA A23.2-15A / ASTM C295

CDM Smith Canada ULC 4720 Kingsway, Suite 1001 Burnaby, BC V5H 4N2 Project Number: 1525-010.3000 April 29, 2017

ATTENTION: Mr. John Newby

PROJECT: Annacis Outfall – Sediment evaluation

Date sampled: 2016

Sampled by: GAL

SH16-06, Sa. 14 @ 108'6" - 109 ft

ROCK/MINERAL TYPE	PERCENT	BY COL	INT BY SI	EVE SIZ	E (mm)	WEIGHTED	MOHS HA	ARDNESS
	0.85, 0.425	0.250	0.150	0.106	0.075	TOTAL	Individual	Weighted
Volcanic lithic fragments	17.5	17.9	12.5	6.7	5.1	14.0	5	0.70
Granite - diorite lithic fragments	36.8	36.1	19.4	5.4	10.6	24.6	6	1.48
Undifferentiated lithic fragments	5.0	4.0	3.2	1.0	1.7	3.3	4	0.13
Quartzite, Chert	3.3	2.3	1.2	0.7		1.6	7	0.11
Quartz	12.4	20.5	36.3	53.8	51.5	31.8	7	2.23
Feldspar	11.2	12.2	16.1	18.9	17.9	14.9	6	0.89
Pyroxene/Amphibole	0.8	2.3	4.9	7.4	6.0	3.9	6	0.23
Epidote			0.8	1.7	2.6	0.6	6.5	0.04
Garnet			0.4	0.7	0.8	0.3	7	0.02
Calcite		0.7	1.2		0.7	1.0	3	0.03
Oxides	0.8	2.3	2.0	1.7	3.0	2.0	6	0.12
Mica	6.6	1.0	1.6	1.3	0.8	1.4	2.5	0.04
Silt/clay lumps	5.8	0.7	0.4			0.6	1	0.01
TOTALS	100.0	100.0	100.0	100.0	100.0	100.0	1200022	6.03
Roundness	0.5	0.4	0.35	0.3	0.25	0.39	Tester inter	
Sphericity	0.6	0.7	0.75	0.8	0.8	0.75		

Note: 1. All identifications done using a binocular microscope, and standard physical index tests. No thin-sections were used.

ESSIO OVINO HRIMER PETROGRAPHER F. Shrimer, P. Ged

<u>Notice:</u> The test data given herein pertain to the sample provided, and may not be applicable to material from other locations/depths. This report constitutes a testing service only. Interpretation of the data given here may be provided upon request.

GOLDER ASSOCIATES LTD., 300 - 3811 North Fraser Way, Burnaby, B.C. Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816

Photographs

Left view: 0.85 mm retained fraction, 10x magnification right view: 0.425 mm retained fraction, 25x magnification	
0.250 mm retained fraction left view: 10x magnification right view: 30x magnification	
0.150 mm retained fraction left view: 10x magnification right view: 50x magnification	

0.106 mm retained fraction. left view: 40x magnification Right view: 60x magnification	
0.075 mm retained fraction. Left view: 10x magnification Right view: 40x magnification	
0.075 mm retained fraction, 60x magnification.	

PETROGRAPHIC EXAMINATION OF FINE AGGREGATE CSA A23.2-15A / ASTM C 295

CDM Smith Canada ULC 4720 Kingsway, Suite 1001 Burnaby, BC V5H 4N2 Project Number: 1525-010.3000 April 29, 2017

ATTENTION: Mr. John Newby **PROJECT:** <u>Annacis Outfall – Sediment evaluation</u>

 Sample:
 SH16-07, Sa. 14 @ 108'6" - 109 ft

 Date sampled:
 2016
 Sampled by:
 GAL

ROCK/MINERAL TYPE	PERCENT BY COUNT BY SIEVE SIZE (mm)				WEIGHTED	MOHS HARDNESS	
	2.5 - 0.425	0.250	0.150	0.106	TOTAL	Individual	Weighted
Volcanic lithic fragments	30.2	20.9	16.8	7.2	18.2	5	0.91
Granite - diorite lithic fragments	19.0	17.5	14.9	21.1	16.6	6	1.00
Undifferentiated lithic fragments	4.9	3.0	2.3	-	2.5	4	0.10
Quartzite - Chert	2.6				0.1	7	0.01
Quartz	23.1	32.9	38.1	33.6	35.0	7	2.45
Feldspar	11.9	14.2	16.8	22.0	16.0	6	0.96
Pyroxene/Amphibole	3.0	6.7	6.7	8.5	6.7	6	0.40
Epidote		0.7	1.1	3.0	1.1	6.5	0.07
Calcite		0.7	0.7	0.3	0.6	3	0.02
Oxides	0.8	1.5	1.5	3.3	1.6	6	0.10
Mica	1.1	1.9	1.1	1.0	1.4	2.5	0.04
Silt/clay lumps	3.4				0.2	1	
TOTALS	100.0	100.0	100.0	100.0	100.0		6.06
Roundness	0.5	0.4	0.35	0.3	0.37		Sec. Sec.
Sphericity	0.75	0.7	0.6	0.5	0.63		

Note: 1. All identifications done using a binocular microscope, and standard physical index tests. No thin-sections were used.

SHRIMFR PETROGRAPHER F. Shrimer CIE

Notice: The test data given herein pertain to the sample provided, and may not be applicable to material from other locations/depths. This report constitutes a testing service only. Interpretation of the data given here may be provided upon request.

GOLDER ASSOCIATES LTD., 300 - 3811 North Fraser Way, Burnaby, B.C. Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816

Photographs

0.425 mm retained fraction left view: 15x magnification right view: 20x magnification	
0.250 mm retained fraction left view: 25x magnification right view: 10x magnification	
0.150 mm retained fraction left view: 30x magnification right view: 40x magnification	
0.106 mm retained fraction left view: 40x magnification right view: 70x magnification	

QUANTITATIVE PHASE ANALYSIS OF 4 POWDER SAMPLES USING THE RIETVELD METHOD AND X-RAY POWDER DIFFRACTION DATA.

Project: 1525-010.2120

Fred Shrimer, P.Geo.,LG/LEG (WA) Golder Associates Ltd. 200 – 2920 Virtual Way Vancouver, BC V5M 0C4

Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Edith Czech, M.Sc. Jenny Lai, B.Sc.

Dept. of Earth, Ocean & Atmospheric Sciences The University of British Columbia 6339 Stores Road Vancouver, BC V6T 1Z4

May 3, 2017

EXPERIMENTAL METHOD

The four samples of **Project 1525-010.2120** were reduced to the optimum grain-size range for quantitative X-ray analysis (<10 μ m) by grinding under ethanol in a vibratory McCrone Micronising Mill for 10 minutes. Step-scan X-ray powder-diffraction data were collected over a range 3-80°20 with CoKa radiation on a Bruker D8 Advance Bragg-Brentano diffractometer equipped with an Fe monochromator foil, 0.6 mm (0.3°) divergence slit, incident- and diffracted-beam Soller slits and a LynxEye-XE detector. The long fine-focus Co X-ray tube was operated at 35 kV and 40 mA, using a take-off angle of 6°.

RESULTS

The X-ray diffractograms were analyzed using the International Centre for Diffraction Database PDF-4 and Search-Match software by Bruker. X-ray powder-diffraction data of the samples were refined with Rietveld program Topas 4.2 (Bruker AXS). The results of quantitative phase analysis by Rietveld refinements are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plots are shown in Figures 1-4.

The samples in Figures 1 and 2 contain a small amount of unknown clay minerals, likely interstratified chlorite-smectite which could not be analyzed (see small humps fitted with calculated peaks at about 7°20 on the corresponding Figures).

Mineral	Ideal Formula	#1	#2	#3	#4
		BH16-06 Sa21 103'-105'	BH16-07 Sa21 108'-110'	SH16-01 Sa47 108'3''-109'9''	SH16-07 Sa14 108'6''-109'
Actinolite	$Ca_2(Mg_5Fe^{2+})_5Si_8O_{22}(OH)_2$	1.9	2.4	2.1	1.7
Ankerite-Dolomite	Ca(Fe ²⁺ ,Mg,Mn)(CO ₃) ₂ /CaMg(CO ₃) ₂	0.9	2.5	1.9	0.9
Calcite	$CaCO_3 - (Ca,Mg)CO_3$	1.2	3.2	1.8	1.1
Clinochlore	$(Mg,Fe^{2+})_{5}Al(Si_{3}Al)O_{10}(OH)_{8}$	3.6	4.3	4.1	3.8
Hematite ?	α-Fe ₂ O ₃				0.2
Illite/Muscovite 1M1	KAl ₂ AlSi ₃ O ₁₀ (OH) ₂ / K _{0.65} Al _{2.0} Al _{0.65} Si _{3.35} O ₁₀ (OH) ₂	2.4			2.2
Illite/Muscovite 2M1	KAl ₂ AlSi ₃ O ₁₀ (OH) ₂ / K _{0.65} Al _{2.0} Al _{0.65} Si _{3.35} O ₁₀ (OH) ₂	4.5	6.5	6.7	4.1
K-feldspar	KAlSi ₃ O ₈	4.7	5.4	5.4	5.2
Laumontite	$Ca_{4}[Al_{8}Si_{16}O_{48}]_{18}H_{2}O$		1.0	0.9	
Magnetite	Fe ₃ O ₄	0.4	0.4	0.4	0.3
Plagioclase	$NaAlSi_3O_8 - CaAl_2Si_2O_8$	30.0	27.4	28.0	30.1
Quartz	SiO ₂	50.0	46.9	48.6	50.5
Siderite, calcian?	(Fe,Ca)CO ₃	0.4			
Total		100.0	100.0	100.0	100.0

 Table 1. Results of quantitative phase analysis (wt.%) – Project 1525-010.2120

Figure 1. Rietveld refinement plot of sample **Golder Associates BH16-06 Sa21 103'-105'** (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below – difference between observed and calculated intensities; vertical bars - positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.

Figure 2. Rietveld refinement plot of sample **Golder Associates BH16-07 Sa21 108'-110'** (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below – difference between observed and calculated intensities; vertical bars - positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.

Figure 3. Rietveld refinement plot of sample **Golder Associates SH16-01 Sa47 108'3''-109'9''** (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below – difference between observed and calculated intensities; vertical bars - positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.

4Golder_SH16-07 Sa14 108ft6-109ft.raw_1

Figure 4. Rietveld refinement plot of sample **Golder Associates SH16-07 Sa14 108'6''-109'** (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below – difference between observed and calculated intensities; vertical bars - positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.

17041IG - Restricted

Test report

Soil Abrasion Test™

Determination of abrasivity of soil samples from the Annacis Island Outfall Project

Author

Daniel Voll

SINTEF Building and Infrastructure Infrastructure 2017-03-27

SINTEF Byggforsk

SINTEF Building and Infrastructure Address: Postboks 4760 Sluppen NO-7465 Trondheim NORWAY

Telephone:+47 73593000 Telefax:+47 73593380

byggforsk@sintef.no http://www.sintef.no/Byggforsk/ Enterprise /VAT No: NO 948007029 MVA

Samarbeidende laboratorium

KEYWORDS Abrasivity Soil Testing

Test report

Soil Abrasion Test™

Determination of abrasivity of soil samples from the Annacis Island Outfall Project

VERSION		DATE
1		2017-03-27
AUTHOR		
Daniel Voll		
CLIENT		CLIENT'S REF.
Golder Associates Ltd	, Canada	Yannick Wittwer
PROJECT NO.		NUMBER OF
102015289-4		PAGES/APPENDICES
TEST OBJECT		TEST OBJECT RECEIVED
4 Soil samples		2017-03-13
TEST PROGRAM	TEST LOCATION	DATE OF TESTING
SAT™	Geological Engineering	From 2017-03-20
	Laboratory	То 2017-03-24
ADCTDACT		

ABSTRACT

The samples were analysed in order to determine soil abrasivity by the Soil Abrasion Test[™] (SAT[™]).

The trademarked acronyms Soil Abrasion Test[™] and SAT[™] are unique for test results and calculated indices originating from the NTNU/SINTEF laboratory and can only be obtained by testing samples at our reference laboratory.

Soil Abrasion Test[™] is performed in accordance with: Nilsen, B., Dahl, F., Holzhäuser, J. and Raleigh, P. (2007): "New test methodology for estimating the abrasiveness of soils for TBM tunnelling", RETC Proceedings, 104 - 116.

The test results relate only to the items tested

PREPARED BY Daniel Voll

APPROVED BY Filip Dahl

REPORT NO. 17041IG

SIGNATURE anlel SIGNATURE CLASSIFICA

Restricted

The report is the client's property and cannot be given to a third party without the client's written consent. The report shall not be reproduced except in full without the written approval of SINTEF

() SINTEF

Table of contents

1	Table of soil samples received for testing	. 3
2	Test results SAT™	.4
3	SAT™ results presented as bar graph	. 4
4	Classification of SAT [™]	. 5
5	Comments and remarks on SAT™ testing and test results	. 5
6	Principle description and photos of the SAT™ test method, equipment and methodology	. 7
7	Photographs of the received soil samples prior to preparation	. 9

PROJECT NO.	
102015289-4	

1 Table of soil samples received for testing

(Given by the Client)

	Borehole	Sample #		De	Lab Test	Sample Size		
INO. /		_	From (m)	To (m)	From (ft)	To (ft)		(kg)
1.	SH16-07	40	32	32.5	105.0	106.6	SAT	2
2.	SH16-05	39	32	32.5	105.0	106.6	SAT	2
3.	SH16-06	40	32.5	33	106.6	108.3	SAT	2
4.	SH16-01	45	33	33.5	108.3	109.9	SAT	2

¹⁾ Given by SINTEF

2 Test results SAT[™]

TEST RESULTS

Sample No. (given by SINTEF)	1	2	3	4
Sample ID (given by the Client)	SH16-07, SA#40 105'-106'6"	SH16-05, SA#39 105'-106'6"	SH16-06, SA#40 106'6"-108'3"	SH16-01, SA#45 108'3"-109'9"
SAT TM test 1	21	21	20	17
SAT [™] test 1	20	20	22	15
SAT TM mean [mg]	20.5	20.5	21.0	16.0
Percentage of the total sample < 4.0 mm after preparation	100 %	100 %	98 %	100 %
Percentage of the total sample < 1.0 mm after preparation	100 %	100 %	94 %	100 %

3 SAT[™] results presented as bar graph

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	4 of 10

4 Classification of SAT[™]

Table 1. Classification of soil abrasivity according to Drevland Jakobsen. P., et al. "Review and assessment of the NTNU/SINTEF Soil Abrasion Test (SAT^M) for determination of abrasiveness of soil and soft ground". TUST 37 (2013), 107 -114.

Category –	SAT TM
Cutter steel abrasion	[weight loss mg]
Low	≤ 7.0
Medium	7.1 – 21.9
High	≥ 22

5 Comments and remarks on SAT[™] testing and test results

The percentages of sample material < 4.0 mm and < 1.0 mm, which are given in the tables on page 4, are subsequent to preparation according to the procedure. The percentages provide information on the properties of the prepared abrasion powder, but they should not be regarded as representative grain size distribution for the received sample material.

The samples were tested on the sieved portion < 4.0 mm by use of SAT[™] pieces (*see Figure 5*).

The tested samples have all a portion of particles < 4.0 mm after preparation, which constitutes > 75 % of the received sample volume. The SATTM value for the samples can hence be regarded as representative for the in-situ material.

The SATTM is based on the Abrasion Value Cutter Steel (AVS) test, which is used to determine the abrasiveness of rock. The classification (*see Table 2*) based on the so far 1747 recorded test results from this test is hence useful also for describing/evaluating the abrasiveness of soils.

Category –	AVS	Cumulative percentage
cutter steel abrasion	[weight loss mg]	
Extremely low	≤ 1.0	0-5%
Very low	1.1 - 3.9	5 – 15 %
Low	4.0 - 12.9	15 – 35 %
Medium	13.0 - 25.9	35 - 65 %
High	26.0 - 35.9	65 - 85 %
Very high	36.0 - 43.9	85 - 95 %
Extremely high	\geq 44.0	95 - 100 %

Table 2. Classification of rock abrasivity or the ability to induce wear on cutter ring steel according to Dahl. F., et al. TUST 28 (2012) 150 - 158.

A summary of rock samples tested by use of AVS and soil samples tested by use of SAT[™] is shown in Figure 1.

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	5 of 10

Figure 1. Cumulative distribution of AVS and SAT[™] *results.*

Based on rock testing, the content of quartz and other hard minerals like garnet and epidote have a major impact on the abrasion on the test pieces, but grain shape, grain size and grain binding may also contribute substantially.

In Table 3, AVS results for some sedimentary rocks tested at SINTEF are shown, illustrating that there is a considerable difference in AVS values between the softest (i.e. limestone) and hardest (i.e. quartzite) rocks. As also shown, the AVS value may vary significantly within one type of rock.

Table 3. AVS	values for	some sedimentary	rock samples	tested at SINTEF
10010 5.1115	vanies joi	some seamennary	rock samples	

Rock type	Number of samples	AVS [weight loss mg]
Limestone	17	0.2 - 1.4
Shale	17	0.4 - 10
Siltstone	4	0.4 - 44
Sandstone	36	0.4 - 52
Quartzite	20	17 – 63

6 Principle description and photos of the SAT[™] test method, equipment and methodology

Figure 2. Principle drawing of the SINTEF/NTNU abrasion tests.

Figure 3. Photos of test equipment used to determine soil abrasivity by the Soil Abrasion Test (SAT[™]).

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	7 of 10

Figure 4. Photo showing a part of a cutter ring, a 10 mm slice taken from the same ring, and two prepared AVS test pieces which are cut out of the center of the slice.

Figure 5. Photo showing two AVS (to the left) and two SAT[™] *test pieces (to the right).*

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	8 of 10

7 Photographs of the received soil samples prior to preparation

Sample No. 1, "SH16-07, SA#40 105'-106'6". The SATTM powder was prepared by sieving with steel balls. Of the total sample volume, 100 % was < 1.0 mm after preparation.

Sample No. 2, "SH16-05, SA#39 105'-106'6". The SATTM powder was prepared by sieving with steel balls. Of the total sample volume, 100 % was < 1.0 mm after preparation.

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	9 of 10

Sample No. 3, "SH16-06, SA#40 106'6"-108'3". The SAT $^{\text{M}}$ powder was prepared by sieving with steel balls. Of the total sample volume, 98 % was < 4.0 mm and 94 % was < 1.0 mm after preparation.

Sample No. 4, "SH16-01, SA#45 108'3"-109'9". The SAT $^{\text{TM}}$ powder was prepared by sieving with steel balls. Of the total sample volume, 100 % was < 1.0 mm after preparation.

PROJECT NO.	REPORT NO.	VERSION	
102015289-4	17041IG	1	10 of 10

.

Technology for a better society www.sintef.no

Miller Number Report For Golder Associates

Test Number	Test Date	Slurry Description	Solids Concentration
2167	3/22/2017	SH16-01 SA#46 108'3-109'9	50% by Mass - 150g Solids - 150g Deionized Water
2168	3/23/2017	SH16-06 SA#41 106'6-108'3	50% by Mass - 150g Solids - 150g Deionized Water
2169	3/28/2017	SH16-07 SA#41 105-106'6	50% by Mass - 150g Solids - 150g Deionized Water
2170	3/29/2017	SH17-05 SA#40 105-106'6	50% by Mass - 150g Solids - 150g Deionized Water

Testing and Report prepared by Brant D. Miller E-mail: bmiller@wres.us Phone (214) 348-3001 Fax (469) 327-2643

WRES, Inc.

6 Horizon Point Frisco, TX 75034-6840 (Dallas Metroplex Area)

Miller Number Determination by ASTM G75-01 For Golder Associates

Golder Associates submitted four core samples for determination of slurry abrasivity by ASTM G75 Miller Number Test Procedure. Each sample was run per the ASTM G75 standard by mixing slurry batches of 150 grams of solids and 150 grams of water for a 50% by mass concentration. A Calcium Hydroxide $[Ca(OH)_2]$ corrosion inhibited slurry test was also performed as part of the standard Miller Number Test Procedure.

The Miller Number abrasivity values for the samples run as a slurry ranged from 122 to 152 which is moderately abrasive. Standard AFS 50/70 sand has a Miller Number of 120. Sample SH16-06 SA#41 106'6-108'3 was the most abrasive of the submitted samples.

Attrition values of -1 to -5 of the Miller Number indicate how the abrasivity is changing with time during the test. Attrition values of the Miller Number point out that the slurry abrasivity changes with time because of usual particle attrition. The negative values indicates the samples are becoming slightly less abrasive with time.

A sieve analysis was performed on the solids to determine the particle size distribution. Results and Photo Micrographs of the material are displayed on following pages.

E1441 Results

Test Information			M	iller/s	SAR I	Numl	ber	Mi	ller N	lumb In	er ∼′ hibit	1mg C ed	a(OF	ł)2	
Test Number	Test Date	Slurry Description	Solids Concentration	Block 1 Loss	Block 2 Loss	Average Loss	Miller Number	Thickness Loss mm	Block 3 Loss	Block 4 Loss	Average Loss Inhibited	Miller Number Inhibited	Thickness Loss mm Inhibited	pH High Inhibited	pH Low Inhibited
2167	3/22/2017	SH16-01 SA#46 108'3-109'9	50% by Mass - 150g Solids - 150g Deionized Water	48.8	46.6	47.7	145.1	0.01950	32.6	32.9	32.7	98.8	0.01339	13.8	13.0
2168	3/23/2017	SH16-06 SA#41 106'6-108'3	50% by Mass - 150g Solids - 150g Deionized Water	50.5	49.4	50.0	152.4	0.02044	37.0	36.3	36.6	111.6	0.01498	13.9	13.1
2169	3/28/2017	SH16-07 SA#41 105-106'6	50% by Mass - 150g Solids - 150g Deionized Water	42.3	41.0	41.7	126.8	0.01705	32.2	30.0	31.1	94.2	0.01272	13.9	13.2
2170	3/29/2017	SH17-05 SA#40 105- 106'6	50% by Mass - 150g Solids - 150g Deionized Water	40.5	39.7	40.1	121.9	0.01640	28.5	28.5	28.5	86.4	0.01166	13.9	13.1

General Discussion

Slurry abrasivity is a complex relationship between chemical and mechanical action on a wear block or wear specimen. The Miller Number abrasivity is a relative rate of wear index of the combined effects of both corrosion and mechanical erosion on a 27% Chrome Iron Wear Block. The Gold Number abrasivity is a relative rate of wear index of the mechanical erosion on a 24K Gold Wear Block. The Gold Number scaled to the Miller Number provides an accurate low abrasivity index. The SAR Number (Slurry Abrasion Response) is a relative rate of volume loss of any solid wearing specimen in given slurry. There is also the potential for synergism to occur between the erosion and corrosion (chemical action) processes that result in higher material loss than is obtained by either process by itself. A standard part of conducting the Miller Number is to conduct a test with corrosion-inhibited slurry using Calcium Hydroxide to raise the pH to 12 + to reduce or eliminate corrosion. Miller Number abrasivity with the inhibited slurry is usually the result of mechanical erosion only. The Miller Number abrasivity difference between the regular slurry and the inhibited slurry is the result of corrosion or the synergistic effect of corrosion and mechanical wear. Oil based slurries will result in a lower Miller, Gold, or SAR Number because of fluid lubricity and reduced potential for corrosion.

Mechanical wear relates to the properties of the solids and fluid as well as the solid concentration and load applied to the wear block or wear specimen. Particle mineral composition, hardness, size, shape, and friability are the main contributing wear factors for the solid components of the slurry. Hardness of minerals as measured by Mohs scale is identified numerically by standard minerals, from 1 (softest) to 10 (hardest):

- 1. Talc
- 2. Gypsum
- 3. Calcite
- 4. Fluorite
- 5. Apatite
- 6. Orthoclase
- 7. Quartz
- 8. Topaz
- 9. Corundum
- 10. Diamond

A mineral of a given hardness will scratch or wear a mineral of a lower number. Miller Number abrasivity (rate of wear) correlates with the Mohs Hardness for a particular mineral tested. Rate of wear increases as hardness of the particle tested increases. The size of the particles in the slurry has a major affect on the degree of wear, similar to the action of sandpaper of different grits. Hence, the larger the grains on the sandpaper the more wear seen, smaller less wear. Particle shapes ranging from spherical to sharp and angular determine the degree wear. Beach sand worn to a rounded shape by wave action for eons of time is much less abrasive than newly fractured quartz of the same general size. Rounded material has a ball bearing effect creating less wear, where as sharp angular solids will gouge the wear block or wear specimen and therefore create more wear.

Mechanical wear directly relates to the concentration of the solids at the wear interface and the load applied. Increasing the concentration of the solids increases the rate of material loss from the wear block or wear specimen until the wear interface is saturated. Further increase in concentration after saturation has little effect on rate of wear. Saturation occurs in fast settling slurries at approximate-ly 20% by mass solids concentration.

Wear Block (Miller Number) or Specimen (SAR Number) Hardness

The Miller Number Test procedure evaluates the relative abrasivity (rate of wear) of particular slurry on a 27% Chrome Iron or 24K Gold Wear Block. The Gold Wear Block is used to evaluate slurries with Miller Numbers less the 20. Gold Number standard 24K Gold Wear Block Hardness is 79-80 Re. The purpose of the Gold Wear block is to lose a significant quantity of material from the wear block in low abrasion slurries. The Gold Number is calculated based on the mass loss of the Gold Wear Block assuming it is a 27% Chrome Iron Wear Block. A factor based on prior silica sand test results is used to scale the Gold Number to approximate the Miller Number Scale. When the hardness of the slurry solids is below the 27% Chrome Iron hardness a lower abrasivity valve is obtained relative to the valve obtained with a 24K Gold Wear Specimen. Higher abrasivity values that may be observed with the 24K Gold Wear Specimens are valid for that particular environment.

Wear Specimen Slurry Abrasion Response (SAR) evaluates abrasion and corrosion response of materials that handle slurries. Hardness of these materials has a correlation to the mechanical abrasion component of the test. However, harder materials may not provide the best slurry abrasion resistance because of corrosion.

Corrosion (Chemical Reaction)

Normally the abrasivity represents the combination and often times synergistic effects from corrosion (chemical reaction) and mechanical abrasion. The Gold Number represents the mechanical abrasion caused by the solids since Gold Wear Blocks are corrosion resistant. Oxidation of the 27% Chrome Iron can occur from Oxygen, Chlorides, or Sulfides. Sulfide scales tend to crack and spall more readily than oxidation products by oxygen or chlorides and result in a higher abrasivity. The Gold Number does not take into account the potential for corrosion in the actual slurry application because of the corrosion resistance of Gold. Corrosion must be considered in addition to the abrasivity value as determined by the Gold Number because corrosion may be present in the actual metallic slurry handling equipment. The SAR Numbers for the metal and Elastomer wear specimens are the combination of the mechanical wear and corrosion of the metal wear specimens and chemical action on the Elastomer wear specimens.

Pa

0.0 <mark>__</mark> 0

Page 6									
ASTM	G75 SI	urry Abr	aeivity	, Det	erminatic	'n			
	By N		asivity what f	Svete	5111111au -				
T	Dy Iv	inter Nur	nper 3	syste	m				
Test	• Miller Num	iber							
Number	: M-2167	De.							
Date	: 22-Mar-2017	7							
Project Description E1///1 Colder Associator									
Description : E1441 Golder Associates									
Description	: SH16-01 SA#46 108'3-109'9								
AFS Test Sand Factor	: 1.0000								
Concentration	50% by Mass - 150g Solids - 150g Deionized Water								
Temperature Wear Specimon	: Ambient								
Description	: 27% Chrom	e Iron							
Specific Gravity	: 7.58	0 1							
Arm Load									
Force	5.00 lbs-f (2	2.24 Newton) fo	r Miller, Go	old, & SA	R Number (Meta	al, Rubber,	Epoxy with	h Fillers)	
Lap Material Description	Neonrene								
Hardness	: 78-82 Shore	e A							
Wear Factor	: 1.000								
Тгау	:	1			2				
Wear Specimen	:	2013-120			2013-121				
Hardness	:	64.7 Rc			66.1 Rc				
Scale Factor	:	1.081			1.132				
	: pH	Mass	Loss	pН	Mass	Loss			
	:	g	mg		g	mg			
Weight Initial Dry (Elastomer Only)	:								
Weight Initial Wet or Dry	: 8.6	14.1100	0.0	8.6	14.0652	0.0			
Weight After 2 Hours	: 8.8	14.0904	19.6	8.7	14.0465	18.6			
Weight After 4 Hours	: 8.8	14.0734	17.0	8.8	14.0292	17.3			
Weight After 6 Hours	: 8.8	14.0572	16.1	8.8	14.0125	16.8	Ac	ctual	
Weight Total Loss		1	52.7			52.7	10	05.5	
Weight Final Dry (Flastomer Only)								~~~	
Dry Loss Factor		ł – †	1 00		1	1 00			
LAP Serial Number		L	1.00		1-2	1.00			
Initial W/t		1							
Einal W/t	:	 			+ +				
Post Eit Analysis	•		- diuctod C	bort Dat	to I	-		1	
Dest Fit Analysis	Llouro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		han Dai	a *Deat Fit	Fror	•		
	Hours	U	D	Ave	Best Fit	Elloi			
	:	mg	mg	mg	mg	mg	4		
Weight Initial Wet or Dry	: 0	0.0	0.0	0.0	0.0	0.000			
Weight After 2 Hours	: 2	18.1	16.5	17.3	17.3	0.000			
Weight After 4 Hours	: 4	33.8	31.7	32.8	32.8	0.001			
Weight After 6 Hours	: 6	48.8	46.6	47.7	47.7	0.000	Inc		
	Cumm	Chart	Max	48.8		0.000	12.2		
								4	
		Click Here to S	olve Curve	Fit					
Results									
Best Fit Mass Loss	: =	9.12	* Hours^	0.923					
Miller Number	· 145.12	Relative Rat	e of Mass	*/Volum	e loss at 2 hc	urs			
Departure	-4%	Relative Rat	e of Char	age in N	lass/Volume	loee at 2	hours		
Lan Mass Loss	. 0.00	ma	e or one.	ige in	lassiverante.	.033 ut 2 .	liours		
	. 0.00	Iliy							
48.8									
								- 1	
						/			
36.6	+				\rightarrow				
Ê									
<u>8</u>					T				
۹ _{24.4}									
s 2 T T									
. Ž									
ative and	- T								
122 I	-								
5									

E1441 Golder Associates

Time - Hours Wear Specimen 2

4

Best Fit

2

Wear Specimen 1

-0

6

ASTM G75 Slurry Abrasivity Determination By Miller Number System

By Miller Number System								
Test								
Туре	: Miller Nu	Imber						
Number	: M-2167	M-2167 ~ 1mg Ca(OH)2 Inhibited						
Project	: 22-Mai-2017							
Description	: E1441 Go	older Associates						
Slurry								
Description	: SH16-01	SA#46 108'3-10	9'9					
AFS Test Sand Factor	: 1.0000	1 450 C-IV	I- 450- D.		M			
Concentration	OU‰ Dy № • Ambient	lass - 150g Solid	is - 150g De	elonized	vvater			
Wear Specimen	Amorena							
Description	: 27% Chro	ome Iron						
Specific Gravity	: 7.58							
Arm Load	5 00 lbs ((22.24 Nourton)	for Millor	Cald 9		atal Dubb	en Engennuith	
Lan Material	0.00 IDS-I	(22.24 Newton)	for miller,	Gold, &	SAR Number (M	etal, Rubb	ber, Epoxy with	
Description	Neopren	e						
Hardness	: 78-82 Sh	ore A						
Wear Factor	: 1.000	2						
Maar Specimen	:—	3043 400			4			
Vear Specimen	:	2013-122			2013-123			
Parla Fastar	:	04.7 KC			00.1 KC			
Scale Factor	·	1.143	1.000	n	1.152	1.005		
	. рн	Mass	LOSS	рн	Mass	LOSS		
Weight Initial Day (Electory or Col.)	:	g	mg		g	mg		
vveight initial Dry (Elastomer Only)	40.0	444000	0.0	40.0	44.44	0.0		
vveight initial vvet or Dry	13.8	14.1386	0.0	13.8	14.1174	0.0		
Weight After 2 Hours	: 13.7	14.1261	12.5	13.7	14.1050	12.5		
Weight After 4 Hours	: 13.5	14.1141	12.0	13.3	14.0927	12.3		
Weight After 6 Hours	: 13.1	14.1013	12.7	13.0	14.0796	13.1	Actual	
Weight Total Loss	:		37.3			37.9	75.1	
Weight Final Dry (Elastomer Only)	:		0.0			0.0		
Dry Loss Factor			1.00			1.00		
LAP Serial Number		L-3			L-4			
Initial Wt	:							
Final Wt	:		-			-		
Best Fit Analysis		A	Adjusted C	hart Da	ta			
	Hours	2013-122	2013-123	Ave	*Best Fit	Error		
	:	mg	mg	mg	mg	mg		
Weight Initial Wet or Dry	: 0	0.0	0.0	0.0	0.0	0.000		
Weight After 2 Hours	: 2	11.0	10.8	10.9	10.8	0.143		
Weight After 4 Hours	• 4	21.5	21.5	21.5	21.7	-0 192		
Weight After 6 Hours	. 6	32.6	32.0	32.7	32.7	0.080	Inc	
Weight Aiter of Hours	Cumm	Chart	JZ.J Max	32.1	52.1	0.000	8.2	
	Cumm	Chan	Ινίαλ	32.9		0.004	0.2	
		Click Here to S	Solve Curve	Fit				
Pasulta								
Results Bost Eit Mass Loss		E 33	* Houre^	1 011				
Millor Number		Deletive Det	of Moor	1.011		ure		
Doparturo	. 90.02 · 40/	Relative Rat	e of Char		e iuss at 2 no		houre	
Departure	. 1%	Relative Rat	e of Char	ige in iv	lass/volume	loss at 2	nours	
Lap mass Loss	. 0.00	mg						
32.9								
24.6					-			
Ē							I	
ŝ								
9 16.4								
aš							1	
2								
atty	· - •							
P 8.2								
3								
							I	
0.0) -			1			
		- T	Ime - Hours	alma- 2	**		0	
• ₩	ear specim		vvear Spe	cimen 2	Best]	

SH16-01 SA#46 108'3-109'9

Solids Particle Distribution (Micron)

SH16-01 SA#46 108'3-109'9

Particles > 150 Micron with 200µ Grid Photo Micrograph

Particles < 150 Micron with 200µ Grid Photo Micrograph

Page 10

ASTM G75 Slurry Abrasivity Determination									
Test	Буі	willer Null	inder 3	bysie					
Type	: Miller Num	nber							
Number : M-2168									
Date : 23-Mar-2017									
Project	Project								
Description	: E1441 Gold	der Associates							
Description	· SH16.06 S	A#41 106'6 108'3							
AFS Test Sand Factor	: 1.0000)							
Concentration	50% by Ma	iss - 150g Solids -	150g Deid	onized W	ater				
Temperature	: Ambient	-	-						
Wear Specimen									
Description	: 27% Chron	ne Iron							
Arm Load	: 7.38								
Force	5.00 lbs-f (22.24 Newton) for	r Miller. Go	old. & SA	R Number (Meta	al. Rubber.	Epoxy with	h Fillers)	
Lap Material						,,			
Description	: Neoprene								
Hardness	: 78-82 Shor	re A							
Wear Factor	: 1.000								
iiay		1			2				
wear Specimen	-	2013-120			2013-121				
Hardness	:	64.7 Rc			66.1 Rc				
Scale Factor	:	1.081			1.132				
	: pH	Mass	Loss	pН	Mass	Loss			
	:	g	mg		g	mg			
Weight Initial Dry (Elastomer Only)	:	Ŭ I	U		J				
Weight Initial Wet or Dry	: 8.6	14,0055	0.0	8.6	13,9660	0.0			
Weight After 2 Hours	. 86	13 9850	20.4	8.6	13 9454	20.6			
Weight After 4 Hours	0.0	13 0672	17.0	0.0	13 0269	19.6			
Weight After & Hours	. 0.7	13.9072	16.4	0.1	13.9200	10.0	<u>^</u>	tual	
Weight Alter 6 Hours	. 0./	13.9509	10.4	0.0	13.9100	10.0	AL		
Vveight Total Loss			54.6			55.9	11	0.6	
Weight Final Dry (Elastomer Only)	:								
Dry Loss Factor			1.00			1.00			
LAP Serial Number		L-1			L-2				
Initial Wt	:								
Final Wt	:		-			-			
Best Fit Analysis		A	djusted C	hart Dat	а				
	Hours	С	D	Ave	*Best Fit	Error			
	•	ma	ma	ma	ma	ma			
Weight Initial Wet or Dry	. 0	0.0	0.0	0.0	0.0	0.000			
Weight After 2 Hours		10.0	10.0	10.5	10.7	0.000			
Weight Alter 2 Hours	· 2	10.9	10.2	C.01	10.7	-0.133			
Weight After 4 Hours	: 4	35.4	34.6	35.0	34.8	0.196			
Weight After 6 Hours	: 6	50.5	49.4	50.0	50.1	-0.086	Inc		
	Cumm	Chart	Max	50.5		0.064	12.6		
		Click Horo to S	olvo Curvo	Fit					
		Click Here to S	olve Culve	r n					
Results									
Best Fit Mass Loss	: =	10.02	* Hours^	0.898					
Miller Number	: 152.37	Relative Rate	e of Mass	/Volum	e loss at 2 ho	ours			
Dementure	: -5%	Relative Rate	e of Char	nae in M	lass/Volume	loss at 2 ł	nours		
Departure		ma							
Departure Lap Mass Loss	· 0.00							-	
Lap Mass Loss	: 0.00	ing							
Lap Mass Loss	: 0.00	ing						-	
Lap Mass Loss	: 0.00	ing						-	
Lap Mass Loss	: 0.00	ing						-	
Lap Mass Loss	: 0.00	ing							
Lap Mass Loss	: 0.00	ing						_	
Jeparture Lap Mass Loss	: 0.00								
Solution State Sta	: 0.00	IIIg			-			_	
Jopparture Lap Mass Loss 50.5 37.9 9 9 25.3	: 0.00				-				
Solution State Sta	: 0.00								
Solution State Sta	: 0.00					/ /			
Jeparture Lap Mass Loss	: 0.00								
Jeparture Lap Mass Loss	: 0.00								
Solution of the second	: 0.00								
Departure Lap Mass Loss 50.5 37.9 Build of the second secon	: 0.00								
Departure Lap Mass Loss 50.5 37.9 Solution 12.6 0.0 0	: 0.00		me - Hours					6	
Joeparture Lap Mass Loss 50.5 37.9 Sold State 12.6 0.0 0	: 0.00	P Timen 1	me - Hours Wear Spec	timen 2	4 Bes	t Fit		6	

Page 11

ASTM G75 Slurry Abrasivity Determination
By Miller Number System

_	Буі		IDEL V	Jysic	111				
Test									
Туре	: Miller Nu	ımber							
Number	: M-2168	M-2168 ~ 1mg Ca(OH)2 Inhibited							
Date	: 23-Mar-2	23-Mar-2017							
Project	ject								
Description	Description : E1441 Golder Associates								
Slurry									
Description	: SH16-06	SA#41 106'6-108	3						
AFS Test Sand Factor	: 1.0000								
Concentration	00% by Mass - 100g Solids - 100g Delonized Water								
Temperature	: Ambient								
Description	. 27% Chr	ma Iran							
Specific Gravity	· 7.58	one non							
Arm Load	. 1.30								
Force	5 00 lbs.	(22.24 Newton)	for Miller	Gold &	SAR Number (M	etal Ruhh	er Enoxy	with	
Force 5.00 lbs-f (22.24 Newton) for Miller, Gold, & SAR Number (Metal, Rubber, Epoxy with									
Description	: Neopren	е							
Hardness	: 78-82 Sh	ore A							
Wear Factor	: 1.000								
Tray	:	3			4				
Wear Specimen	:	2013-122			2013-123				
Hardness		64.7 Rc			66.1 Rc				
Scale Factor		1 1 4 2			1 150				
		1.143	1.000		1.102	1			
	: pH	Mass	LOSS	рН	Mass	LOSS			
	:	g	mg		g	mg			
Weight Initial Dry (Elastomer Only)	:								
Weight Initial Wet or Dry	: 13.9	14.0791	0.0	13.9	14.0364	0.0			
Woight After 2 Hours	12.0	14.0640	14.0	13.0	14 0014	15.0			
	. 13.0	14.0042	14.9	13.0	14.0214	15.0			
Weight After 4 Hours	: 13.6	14.0501	14.1	13.7	14.0076	13.8			
Weight After 6 Hours	: 13.1	14.0368	13.3	13.2	13.9945	13.0	Ac	tual	
Weight Total Loss			42.2			418	84	4 1	
Weight Final Dry (Elastomor Only)	.—		0.0			0.0			
Drukees Fester	·		1.00			1.00			
Dry Loss Factor			1.00			1.00			
LAP Serial Number		L-3			L-4				
Initial Wt	:								
Final Wt	:		-			-			
Bost Eit Analysis	-	^	diusted C	hart Da	ta				
Dest III Andiysis				nan Da	ια *D (Γ')	-			
	Hours	2013-122	2013-123	Ave	*Best Fit	Error			
	:	mg	mg	mg	mg	mg			
Weight Initial Wet or Dry	: 0	0.0	0.0	0.0	0.0	0.000			
Weight After 2 Hours	. 2	13.0	13.0	13.0	13.1	0.060			
Weight After 4 Haves	. 2	15.0	05.0	05.0	10.1	-0.003			
Vveight After 4 Hours	: 4	25.3	25.0	25.2	25.1	0.097			
Weight After 6 Hours	: 6	37.0	36.3	36.6	36.7	-0.042	Inc		
	Cumm	Chart	Max	37.0		0.016	9.2		
	•					-			
		Click Here to S	Solve Curve	Fit					
De suite									
Results									
Best Fit Mass Loss	: =	6.82	[•] Hours [•]	0.939					
Miller Number	: 111.59	Relative Rate	e of Mass	/Volum	e loss at 2 ho	ours			
Departure	: -3 %	Relative Rate	e of Chan	ige in M	lass/Volume	loss at 2	hours		
Lap Mass Loss	· 0.00	ma							
Lap Mass 2033	. 0.00	ing						_	
37.0									
							-		
1 1						_			
I						-			
27.7									
Ĕ				_					
ģ			_	/ _					
<u> </u>			<u> </u>						
S 10.5									
Ξ									
<u>8</u>									
1 9.2	-								
٥									
0.0									
0	:	2 т	ime - Hours		4			6	
• W	ear Specim	en 1 🛛	Wear Spe	cimen 2	- Best	t Fit]		
L							,		

SH16-06 SA#41 106'6-108'3

Solids Particle Distribution (Micron)

SH16-06 SA#41 106'6-108'3

Particles > 150 Micron with 200µ Grid Photo Micrograph

Particles < 150 Micron with 200µ Grid Photo Micrograph

Page 14

ASTM G75 Slurry Abrasivity Determination								
	By I	Miller Nur	nber S	Syste	m			
Test Type	: Miller Nun	nber						
Number : M-2169								
Date	Date : 28-Mar-2017							
Project	E1//1 Gol	der Associates						
Slurry	. 11441 000	del Associates						
Description	: SH16-07 S	6A#41 105-106'6						
AFS Test Sand Factor	: 1.000)						
Concentration	50% by Ma	ss - 150g Solids	- 150g Deio	nized W	ater			
Temperature	: Ambient							
Wear Specimen	27% Chron	no Iron						
Specific Gravity	: 7.58	ne non						
Arm Load								
Force	5.00 lbs-f (22.24 Newton) fo	r Miller, Go	old, & SA	R Number (Meta	al, Rubber,	Epoxy wit	h Fillers)
Lap Material								
Description	Neoprene							
Wear Factor	: 70-02 SHOI : 1.000	eA						
Tray	:	1			2			
Wear Specimen	:	2013-120			2013-121			
Hardness	:	64.9 Rc			64.6 Rc			
Scale Factor	:	1.081			1,132			
	: nH	Mass	1.055	pH	Mass	220		
		n	mg	рп	0	ma		
Weight Initial Dry (Elastomer Only)		g	mg		y	ing		
Weight Initial Wet or Dry		13 9440	0.0	21	13 9062	0.0		
Weight After 2 Hours	0.1	13.0449	16.0	0.1	13,0003	16.1		
Weight After 4 Leure	. 0.0	13.8287	10.2	0.0	13.7902	10.1		
Weight After 4 Hours	8.8	13.8130	10.1	8.8	13.//4/	15.4	0.0	4
Veight After 6 Hours	: 8.8	13.7991	14.5	8.8	13.7598	14.9	AC	
Weight Total Loss	:		45.8			46.4	9	2.2
Weight Final Dry (Elastomer Only)	:							
Dry Loss Factor			1.00			1.00		
LAP Serial Number		L-1			L-2			
Initial Wt	:							
Final Wt	:		-			-		
Best Fit Analysis		A	djusted C	hart Dat	a			
	Hours	С	D	Ave	*Best Fit	Error		
	:	mg	mg	mg	mg	mg		
Weight Initial Wet or Dry	: 0	0.0	0.0	0.0	0.0	0.000		
Weight After 2 Hours	: 2	15.0	14.2	14.6	14.6	-0.040		
Weight After 4 Hours	: 4	28.9	27.9	28.4	28.3	0.056		
Weight After 6 Hours	. 6	42.3	41.0	417	417	-0.024	Inc	
Weight Alter of Hours	Cumm	Chart	Max	12.3		0.005	10.6	
	Oumin	Ghan	Max	42.0		0.005	10.0	
•		Click Here to S	olve Curve	Fit				
Results								
Best Fit Mass Loss	: =	7.57	* Hours^	0.953				
Miller Number	: 126.82	Relative Rat	e of Mass	/Volum	e loss at 2 ho	ours		
Departure	: -2 %	Relative Rat	e of Chan	nge in N	lass/Volume	loss at 2 l	hours	
Lap Mass Loss	: 0.00	mg						
42.3								
								- -
							<u> </u>	
21.0						/		
91.0 P								
				/				
os .								
v 21.2		/						
. W								
<u>A</u>		F						
별 10.6 · · · · · · · · · · · · · · · · · · ·					_			
ľ l 🦯								
0.0								
0	2	? Ti	me - Hours		4			6
• V	Vear Specime	en 1 🔹	Wear Spec	imen 2	Bes	t Fit		
L								

Page 15

ASTM G75 Slurry Abrasivity Determination
By Miller Number System

_	Буі		IDEL V	Jysic	111				
Test									
Туре	: Miller Nu	ımber							
Number	: M-2169	M-2169 ~ 1mg Ca(OH)2 Inhibited							
Date	: 28-Mar-2	28-Mar-2017							
Project									
Description	: E1441 Go	older Associates							
Slurry	01140.07								
Description	: SH16-07 SA#41 105-106'6								
AFS Test Sand Factor	: 1.0000								
Concentration	50% by Mass - 150g Solids - 150g Deionized Water								
Temperature	: Ambient								
Description	27% Chr	ma Iran							
Specific Gravity	· 7 58	ome non							
Arm Load	. 7.30								
Force	5 00 lbs f	(22.24 Newton)	for Miller	Gold &	SAR Number (M	otal Rubb	per Enoxy with		
Force 5.00 lbs-f (22.24 Newton) for Miller, Gold, & SAR Number (Metal, Rubber, Epoxy with									
Description	Neopren	e							
Hardness	: 78-82 Sh	ore A							
Wear Factor	1.000								
Trav	:	3			4				
Wear Specimen		2013-122			2013-123				
Hardness	.—	64 7 Do			66 1 Do				
	:	04.7 KC			00.1 KC				
Scale Factor	•	1.143			1.152				
	: pH	Mass	Loss	pН	Mass	Loss			
	:	g	mg		g	mg			
Weight Initial Dry (Elastomer Only)	:	Ŭ Ŭ	<u> </u>			<u> </u>			
Weight Initial Wet or Dry	13.0	13 0235	0.0	13.0	13 9620	0.0			
	13.9	13.9230	0.0	10.9	13.0020	0.0			
weight After 2 Hours	: 13.7	13.9121	11.4	13.8	13.8504	11.5			
Weight After 4 Hours	: 13.4	13.8989	13.3	13.5	13.8389	11.5			
Weight After 6 Hours	: 13.2	13.8868	12.1	13.3	13.8274	11.5	Actual		
Weight Total Loss			36.8			34.6	71 /		
Weight Total Loss			0.0			0.0	11.4		
vveight Final Dry (Elastomer Only)	:		0.0			0.0			
Dry Loss Factor			1.00			1.00			
LAP Serial Number		L-3			L-4				
Initial Wt	:								
Final Wt									
Dest Eit Asshuis	•		-	h t D -	t-	-			
Best Fit Analysis		A	ajustea C	nan Da	la				
	Hours	2013-122	2013-123	Ave	*Best Fit	Error			
	:	mg	mg	mg	mg	mg			
Weight Initial Wet or Dry	• •	0.0	0.0	00	0.0	0,000			
Weight Affen Ollaum		40.0	40.0	40.0	40.4	0.000			
weight After 2 Hours	: 2	10.0	10.0	10.0	10.1	-0.152			
Weight After 4 Hours	: 4	21.6	20.0	20.8	20.6	0.202			
Weight After 6 Hours	: 6	32.2	30.0	31.1	31.2	-0.084	Inc		
	Cumm	Chart	Max	32.2		0.071	80		
	- Summ	Junt		JL.L		0.011	0.0		
		Click Here to S	Solve Curve	Fit					
Results									
Best Fit Mass Loss	: =	5.00	* Hours^	1.022					
Miller Number	: 94.24	Relative Rate	e of Mass	/Volum	e loss at 2 ho	ours			
Departure	• 1%	Relative Rate	ofChar	nde in M	lass/Volume	loss at 2	hours		
Lon Mana Long	. 1/0	Relative Rate	Goronal	gennw	assi volume i	1035 dl Z	noura		
Lap Mass Loss	: 0.00	mg							
32.2									
24.1									
Ē									
				_					
8				/					
16.1							I		
W									
e	_								
te									
							i		
5									
0.0									
0.0		2 т	ime - Houre		4		6		
	ar Speeler	on 1 =	Moar Cro	cimon 2	Ree	+ Eit	1		
Wear Specimen 1 Wear Specimen 2 Best Fit									

SH16-07 SA#41 105-106'6

Solids Particle Distribution (Micron)

SH16-07 SA#41 105-106'6

Particles > 150 Micron with 200µ Grid Photo Micrograph

Particles < 150 Micron with 200µ Grid Photo Micrograph

Page 18

ASTM G75 Slurry Abrasivity Determination										
By Miller Number System										
Test										
i ype Number	 Miller Num M.2170 	ber								
Date	29-Mar-2017									
Project										
Description	: E1441 Golder Associates									
Slurry										
Description	: SH17-05 SA#40 105-106'6									
AFS Test Sand Factor	50% by Mass. 150g Solids. 150g Dejonized Water									
Temperature	: Ambient									
Wear Specimen										
Description	: 27% Chrome Iron									
Specific Gravity	: 7.58									
Arm Load										
Force	5.00 Ibs-f (22.24 Newton) for Miller, Gold, & SAR Number (Metal, Rubber, Epoxy with Fillers)									
Description	· Neoprene									
Hardness	: 78-82 Shore A									
Wear Factor	: 1.000									
Tray	: 1 2									
Wear Specimen	:	2013-120			2013-121					
Hardness	:	64.7 Rc			66.1 Rc					
Scale Factor	:	1.081			1.132					
	; pH	Mass	Loss	рН	Mass	Loss				
	:	a	ma		a	ma				
Weight Initial Dry (Flastomer Only)		9	mg		Э	mg				
Weight Initial Wet or Dry		13 7050	0.0	84	13 7570	0.0				
Weight After 2 Hours	0.4	13.7939	15.1	0.4	42 7402	15.5				
Weight After 4 Haves	. 0.1	13.7606	10.1	0.1	13.7423	10.0				
Weight After C Haves	8.8	13.7002	14.0	8.7	13.7273	10.0	Astual			
Weight After 6 Hours	: 8.9	13.7521	14.1	8.9	13.7129	14.4	Actual			
Weight Lotal Loss	:		43.8			44.9	88.7			
Weight Final Dry (Elastomer Only)	:									
Dry Loss Factor			1.00			1.00				
LAP Serial Number		L-1			L-2					
Initial Wt	:									
Final Wt	:		-			-				
Best Fit Analysis		A	djusted C	hart Dat	a					
	Hours	С	D	Ave	*Best Fit	Error				
		ma	ma	ma	ma	ma				
Weight Initial Wet or Dry	• 0	0.0	0.0	0.0	0.0	0.000				
Weight After 2 Hours		14.0	13.7	13.8	13.0	0.064				
Weight After 4 Hours	. 2	27.5	26.0	27.2	27.1	-0.004				
Weight After C Haves	. 4	21.5	20.9	21.2	21.1	0.000	la a			
Weight After 6 Hours	: 0	40.5	39.7	40.1	40.1	-0.037				
	Cumm	Chart	Мах	40.5		0.013	10.1			
		Click Here to Se	olve Curve	Fit						
Results										
Best Fit Mass Loss	: =	7.11	* Hours^	0.966						
Miller Number	: 121.94	Relative Rate	e of Mass	/Volum	e loss at 2 ho	ours				
Departure	-2%	Relative Rate	of Char	nae in M	ass/Volume	loss at 2 l	nours			
Lan Mass Loss	· 0.00	ma								
40.5	. 0.00									
40.5										
]]							•			
30.4										
Ĕ										
s			_							
20.3 -		-								
Mas										
3										
v 2 Time - Hours 4 6										
Wear Specimen 1 Wear Specimen 2 Best Fit										

Page 19

ASTM G75 Slurry Abrasivity Determination
By Miller Number System

			inder v	yaic							
Test											
Туре	Miller Nu	ımber									
Number	: M-2170 ~ 1mg Ca(OH)2 Inhibited										
Date	29-Mar-2	017									
Project											
Description : E1441 Golder Associates											
Slurry											
Description	: SH17-05 SA#40 105-106'6										
AFS Test Sand Factor	: 1.0000										
Concentration	50% by N	lass - 150g Solid	ls - 150a De	ionized	Water						
Temperature	Ambient	1009 50110	13 - 150g Di	Jointea							
Wear Specimen	. Ambrent										
vear specifier											
Specific Gravity	schipton : 27% Chrome non										
previne Gravity . 1.30 million											
Allin Lugu 5.00 lbs f /22.24 Nourton) for Millor Cold. 9.54D Number (Motel: Dubber Economistic											
Lan Matorial 3.00 IDS-1 (22.24 Newton) for Miller, Gold, & SAK Number (Metal, Rubber, Epoxy with											
Description	· Neoprepe										
Description		e ^									
Hardness Wear Factor	: 78-82 Shore A										
тау	3 4										
Wear Specimen	:	2013-122	2013-123								
Hardness	: 64.7 Rc 66.1 Rc										
Scale Factor		1 143			1 152						
		Mass	1		Marr	1.077					
	. pH	Mass	LOSS	рн	Mass	LOSS					
	:	g	mg		g	mg					
Weight Initial Dry (Elastomer Only)	:		-			-					
Weight Initial Wet or Dry	12.0	42 00 42	0.0	42.0	12 0067	0.0					
weight initial wet of Dry	13.9	13.8843	0.0	15.9	13.8207	0.0					
Weight After 2 Hours	: 13.9	13.8734	10.9	13.9	13.8154	11.3					
Weight After 4 Hours	13.5	13 8626	10.8	137	13 8048	10.6					
Weight After 6 Hours	12.4	12 0517	10.0	42.4	12 7020	10.0	Actual				
	. 13.1	13.6517	10.9	19.1	13.7930	10.9	Actual				
Weight Total Loss	:		32.6			32.9	65.4				
Weight Final Dry (Elastomer Only)	:		0.0			0.0					
Dry Loss Factor			1.00			1.00					
Diveos Facio			1.00			1.00					
LAP Serial Number		L-3			L-4						
Initial Wt	:										
Final Wt			-			-					
Dest Eit Analysia			diverte el C	hart Dat	-						
Best Fit Analysis		A	ajustea C	nan Da	a						
	Hours	2013-122	2013-123	Ave	*Best Fit	Error					
	-	ma	ma	ma	ma	ma					
		0.0	0.0	0.0	0.0	0.000					
weight initial wet or Dry	: 0	0.0	0.0	0.0	0.0	0.000					
Weight After 2 Hours	: 2	9.5	9.8	9.7	9.6	0.051					
Weight After 4 Hours	• 4	19.0	19.0	19.0	10.1	-0.070					
Weight After O Llaws		10.0	00.5	00.5	00.5	-0.010	la a				
Weight After 6 Hours	: 0	28.5	28.5	28.5	28.5	0.030	Inc				
	Cumm	Chart	Max	28.5		0.008	7.1				
		Click Here to S	Solve Curve	Fit							
Results											
Best Fit Mass Loss	: =	4.84	* Hours^	0.989							
Miller Number	. 86.30	Relative Det	of Maco	Molum	e loee at 2 ha	ure					
	. 00.30			, voium	e iuss at 2 110	uis 					
Departure	: -1%	Relative Rate	e of Char	ige in M	lass/Volume I	loss at 2	hours				
Lap Mass Loss	: 0.00	mg									
20.5		-									
28.5											
						_					
1 1						-					
21.4					/						
Ĕ											
io i											
S											
v 14.3											
las											
2 0											
lê l											
별 7.1							I				
°											
0 2 Time - Hours 4 6											
Wear Specimen 1 Wear Specimen 2 Best Fit											
Wear Specimen 1 Wear Specimen 2 Hest Hit											

SH17-05 SA#40 105-106'6

Solids Particle Distribution (Micron)

SH17-05 SA#40 105-106'6

Particles > 150 Micron with 200µ Grid Photo Micrograph

Particles < 150 Micron with 200µ Grid Photo Micrograph

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa Australasia+ 61 3 8862 3500Europe+ 356 21 42 30 20 North America + 1 800 275 3281

+ 27 11 254 4800

+ 86 21 6258 5522

South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada T: +1 (604) 296 4200

This page intentionally left blank.

